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1 Introduction

Since the publication of Fechner’s ‘Elements of Psychophysics’ (1860), a major

goal within vision science has been to build models of how the visual system

operates in real-world scenarios from studies with simple stimuli in tightly

controlled experimental settings. The last decade has seen an important shift

in perspective away from this extreme reductionism, however: instead of

focusing on stimuli that have only one feature value (e.g., a single hue or

orientation), researchers have increasingly used heterogenous stimuli with

features varying in space (e.g., an apple; Figure 1) and time (e.g., sequences

of different colours) to understand how they are perceived and represented. This

matches a recent general trend towards a focus on probabilistic models of

perception and has provided exciting new insights about visual processing.

Here we ask: how does information about such heterogeneous stimuli affect

performance in visual tasks, and how is it acquired and represented?

1.1 Variability Is a Fundamental Aspect of How the Richness
of the Environment Is Represented

One fundamental aspect of the real world is the enormous variability in the

input. In this overview, our aim is to connect disparate threads of studies of

visual variability in different domains (e.g., orientation, colour, shape) and at

different timescales (from one-shot perception to long-term learning) to

uncover how the visual system extracts the variability in the visual world and

how it is represented.

The visual environment contains a lot of variability and notable detail. How

are these visual stimuli and the variation within them represented? It seems fair

to say that the basic assumption in the literature has been that single value

estimates are the unit of, for example, attentional processing, working memory

(Cohen et al., 2016), and so on, and that these single point representations can be

noisy (Bays et al., 2022). But importantly a key assumption seems to be that the

visual system does not make any attempt at actually representing the variability,

as such.

It is indeed a popular view within the visual perception literature that we

represent far less of the visual environment than we often feel we do. An often-

cited example is how studies of change blindness and inattentional blindness

seem to indicate that we represent much less of our visual environments than we

think we do. This general idea comes in many flavours and has been called the

‘grand illusion’ view (O’Regan & Noë, 2001; Rensink, 2000; Simons, 2000). It

is fundamentally important, however, to note that even if change blindness

occurs, this does not preclude that detail is represented since there can certainly

1Representing Variability
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Figure 1 The visual properties of real-world objects, such as an apple shown here, vary in space and time. How do we represent this

variability in perception? The images on the right show how colours of this apple can be represented under different assumptions. For a long

time, studies in vision science mostly used stimuli with discrete non-varying features, as if the apple can be represented with just two colours

(left). More recently, a summary statistics account has emerged that suggests that a few summary statistics (e.g., mean and variance) are

enough to describe the visual variability (middle). But other studies indicate that visual representations can be more complex, taking into

account the properties of visual features beyond simple statistics (right). Plots on the bottom show the probability distributions of the colours

of the apple under these assumptions while the upper row shows colours randomly sampled from these distributions.

https://doi.org/10.1017/9781009396035 Published online by Cambridge University Press
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be a clear distinction between what can be consciously reported and what can be

represented (Fernandez-Duque &Thornton, 2000; Haberman&Whitney, 2011;

Hansmann-Roth et al., 2021; see Haun et al., 2017 for a recent discussion). One

need not look further than the famous findings within neuropsychology, at

phenomena such as blindsight or hemispatial neglect, to see clear examples of

this.

1.2 Uncertainty as a Dimension in Perception

Recently, this trend for sparseness and summaries has been changing, however,

with the increased popularity of probabilistic views of perception (Koblinger

et al., 2021; Ma, 2012; Tanrıkulu et al., 2021a). Such probabilistic accounts of

perception tend to assume that our brains perform probabilistic calculations

involving uncertainty. Visual information is thought to be represented as

a probability density function of potential feature values of visual items rather

than as representation of a single value. In a recent article, Yoo et al. (2021) tested

an orientation change detection task where one condition required the mainten-

ance of the uncertainty in the stimulation while the other condition did not require

this. Yoo et al. found that uncertainty is represented in working memory (rather

than the representations simply being noisy). This result argues against single

value accounts of working memory since the result indicated that it is not just that

estimates are noisy, but uncertainty is actually represented. Consistent with this,

variability can be primed, importantly, even when the features of the prime and

target come from different categories (Michael et al., 2014).

It has indeed been suggested that variability operates as a separate dimension

in visual processing (Norman et al., 2015). Norman et al. found that adaptation

to variance in orientation caused a negative after-effect in the perceived vari-

ance. Importantly the adaptation was present across changes in mean orienta-

tion, which showed that the adaptation to variability applied independently of

the actual mean orientation. Notably, this variability adaptation was retinotopic

but not spatiotopic, presumably indicating processing at relatively early levels.

What is interesting here, is how this suggests that variance can be considered

a special perceptual dimension. The results of Norman et al. (2015) show how

variation is an entity in orientation space that is not bound to its mean (but see

Section 3.1.1 for contradicting results). The findings of Maule and Franklin

(2020) also support the view that variance is a special dimension in perception.

They found that adaptation to a high-variance colour ensemble led to a negative

after-effect, where an orientation ensemble was judged to be less variable than it

actually was. This highlights how variability alone can be important in what we

perceive.

3Representing Variability
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In what follows, we will review how the heterogeneity (or variability) of

visual stimuli matters for different visual tasks, ranging from classic findings on

the effects of distractor variability in visual search (Duncan & Humphreys,

1989) to recent reports on the role of variability in crowding (Tiurina et al.,

2022). Having shown how heterogeneity can help or hinder performance on

a variety of perceptual tasks, we will then discuss attempts at uncovering the

details of how it is represented. We will cover various approaches to this

problem, ranging from classical psychophysics (Dakin, 2001; Lau & Brady,

2018) and explicit reproduction (Oriet & Hozempa, 2016), to more implicit

paradigms where representations are reconstructed from behavioural perform-

ance (e.g., Acerbi et al., 2012; Chetverikov et al., 2016, 2019; Hansmann-Roth

et al., 2021, 2022; Tanrıkulu et al., 2021a).

One of our aims here is to argue against ‘grand illusion’ accounts of visual

perception. Various authors have argued that our impression of a world that is

rich, detailed and continuous over time is illusory. To the casual reader (and

perceiver) such arguments may seem ludicrous, but there is interesting experi-

mental evidence that does suggest that such views should at least be taken

seriously. The most pertinent findings are, on the one hand, change blindness

and inattentional blindness, and then a large amount of evidence for the

processing of summary statistics in the visual input (Corbett et al., 2023;

Haberman & Whitney, 2012). One of the main messages here is how research

into how human observers represent variability reveals that far more detail is

represented and processed than such accounts propose.

1.3 Clarifying the Definitions

When discussing variability and how it is represented, it is important to distin-

guish between the variability and the observers’ internal representation of the

variability, between explicit and implicit representations, and between variabil-

ity representation and uncertainty. We will use the term variability to refer to

variation in the features of stimuli in space and time. In particular, we will often

talk about feature probability distributions, or feature distributions, for brevity.

A probability distribution is a mathematical concept defining how probable

each feature value is within a certain set of stimuli. The feature distribution is

a characteristic of the visual world and is not directly available to observers,

however, they might build a representation of it from incoming sensory signals.

Observers’ representations of variability can be explicit or implicit

(Figure 2). By explicit representation of variability, we mean a representation

in which the amount of variability is represented as a parameter, for example, as

a standard deviation or range of stimuli features. Such explicit representations

4 Perception
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are often parts of traditional Bayesian ideal observer models along with the

mean or other parameters (e.g., van den Berg & Ma, 2012). Note that while we

depict explicit representation of variance in Figure 2 as having uncertainty (see

later in this section), it can also be represented as a fixed parameter or, if it is to

be inferred, as a point estimate. In contrast, variability can also be represented

implicitly as part of the representation of a feature distribution. That is, if an

observer knows the probabilities of different feature values (not necessarily

matching the feature distribution accurately), this knowledge will implicitly

include knowledge about their variability even though no specific parameter

describes the variability per se.

Implicit representations of variability can be, in turn, model-free or model-

based. If the observer has an explicit representation of variability and other

parameters, this model can be used to infer the probability of different features

(a posterior predictive distribution in Bayesian terms), a model-based implicit

representation of variability. On the other hand, a model-free representation can

also emerge if sensory signals are used to directly infer the feature probabilities.

Uncertainty is different from variability, as the former term is used here and in

the literature (e.g., Koblinger et al., 2021; Rahnev et al., 2021), to refer to the

amount of information in the internal representation of some inferred quantity.

Inferred is an important qualifier here as uncertainty arises only when an observer

is trying to go beyond the data at hand. For example, if you need to compute the

average height of four people, you can do so precisely and there will be no

uncertainty. But if you are told that these people are randomly picked from some

population and are asked to infer the average height in that population, there will

be uncertainty in your estimate, and it will probably be quite high in this case,

since your data set consists of only a tiny part of the population. This distinction is

important because estimates of variability (e.g., variance or range) will have their

own uncertainty. At the same time, as we will discuss in more detail later,

variability can create uncertainty in other estimates (such as the average), but

such uncertainty does not necessarily imply that variability is represented.

We will also distinguish between summary statistics and image-computable

statistics. We will use the term ‘summary statistics’ to refer to summaries of

visual features as, for example their mean, variance, range, or skew, such as

when observers can relatively accurately infer the mean size or orientation of

stimulus sets (Corbett et al., 2023; Haberman & Whitney, 2012). The outputs

from multi-level image processing filters (Balas et al., 2009; Freeman &

Simoncelli, 2011; Portilla & Simoncelli, 2000) are also sometimes referred to

as summary statistics but they are a far more complex entity, so to avoid

confusion, we will refer to them as image-computable statistics (see

Rosenholtz, 2020 for a more detailed discussion of this distinction).

5Representing Variability
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Figure 2 Clarifying the definitions: Variability, uncertainty, and stimuli distributions. A feature probability distribution or ‘feature

distribution’ for short, describes the probability of different feature values (here, orientation) in the visual world. It is unavailable to the

observer in any direct way. The observer can then represent the variability of stimuli (here, orientations of Gabor patches) in different ways.

https://doi.org/10.1017/9781009396035 Published online by Cambridge University Press
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Caption for Figure 2 (cont.)

First, following the traditional Bayesian ideal observer approach, the observer can use a certain model to represent or estimate the

environmental statistics, including, for example, the mean and a variability-related quantity (e.g., standard deviation). In this case, the

variability (along with the mean) could be said to be represented explicitly. This is different from the representation of uncertainty often

discussed in the literature since uncertainty would correspond to the amount of information about the parameters (so there’s uncertainty for

the mean and the standard deviation). Alternatively, or perhaps in addition, the observer could use an implicit representation of variability

incorporated into the estimated probability of occurrence of certain stimuli in the world, or essentially, an internal representation of a feature

probability distribution. This implicit representation does not have a parameter (like variance in the other version) for variability and is hence

implicit. But it can be either model-free or model-based, with the model-based representation based on a model, such as the one discussed in

Section 1.3.

https://doi.org/10.1017/9781009396035 Published online by Cambridge University Press
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2 How Does Variability Affect Visual Cognition?

2.1 Visual Search

Does variability matter for visual perception? One of the fields within vision

science where this question has been thoroughly explored is visual search. In the

most common version of the visual search task, observers have to find

a stimulus (‘target’) determined by a feature, such as colour or orientation, or

a combination of features, among several ‘distractors’. In a now classic study,

Duncan and Humphreys (1989) found that people made fewer mistakes when

distractors were identical to each other compared to when they varied. In Driver

et al. (1992), visual search performance was modulated by whether the search

items oscillated in phase with one another or not. Search was most difficult

when the search items that moved in the motion direction that denoted the

target, moved out of phase with each other and the items moving in the

nontarget direction also moved out of phase with each other, therefore increas-

ing variability. Later, Nagy et al. (2005) tested search for targets defined by

colour and found that when the colour values of the stimuli were varied on

another cardinal axis than the cardinal axis which differentiated the targets from

distractors, visual search was also impaired. Generally, the effect of distractor

variability has then been replicated in many studies for various feature dimen-

sions (e.g., Avraham et al., 2008; Calder-Travis &Ma, 2020; Chetverikov et al.,

2016; Mazyar et al., 2013; Rosenholtz, 2001; Utochkin, 2013; Vincent et al.,

2009).

Notably, however, high distractor variability is not always detrimental to

performance. Duncan and Humphreys (1989) suggested that the effect of

distractor variability depends on target-distractor similarity (and vice versa).

More specifically, they suggested that when distractors are very dissimilar from

the target, increasing their heterogeneity should have little or no effects on

performance. In contrast, when distractors become more similar to targets,

search performance should become worse with increasing heterogeneity. This

prediction has been found to hold in studies where the effects of distractor

variability upon visual search performance were weaker as the distractors

became more dissimilar to targets (Calder-Travis & Ma, 2020; Chetverikov

et al., 2016; Rosenholtz, 2001).

While distractor heterogeneity clearly affects performance, some recent

studies suggest that it is not the heterogeneity of distractors per se, but instead,

what might be called its side effects, that are important. Calder-Travis and Ma

(2020) and Mihali and Ma (2020) noted that since increasing distractor vari-

ability increases the range of distractor features, the distance between a target

and the distractor most similar to it becomes lower. They further showed that

8 Perception
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when both factors are taken into account, it is the minimal distance and not the

variability that has the strongest effect on performance. Others, however, have

found effects of distractor variability even when the minimum target to dis-

tractor similarity is controlled for (Chetverikov et al., 2016; Rosenholtz, 2001).

Rosenholtz (2001) also reported that the denser the displays, the larger the effect

of variability.

Can distractor variability be beneficial for visual search? Interestingly,

Utochkin and Yurevich (2016) tested an orientation search task, finding that

search became more difficult with three distinct groups of distractors (e.g.,

a third of stimuli oriented at 45 deg., a third at 67.5 deg., and a third at 90

deg.) than search with two groups within the same range of orientations (e.g.,

half of the distractors at 45 deg. and half at 90 deg.), even though the standard

deviation of distractors was higher in the latter case than in the former. They

explained the findings by introducing the concept of ‘segmentability’, suggest-

ing that observers automatically group (or ‘segment’) distractors into subsets, so

that performance is better when distractors are more variable but easier to group

together (see also Duncan & Humphreys, 1989; Wang et al., 2005). Similar

patterns of results have also been observed in ensemble averaging studies (see

Section 2.3) and this raises interesting questions about the meaning of variabil-

ity in the light of the hierarchical nature of visual information processing.

2.2 Crowding

Crowding refers to impaired identification of object features when an object,

usually in the periphery of the visual field, is presented in a particular context,

such as among one or several flanking items (Whitney & Levi, 2011). Crowding

occurs when objects that are easily recognized and visible in isolation become

unrecognizable when they are viewed in clutter.

The effects of variability upon crowding can be seen when the visibility of

a stimulus is affected. Increasing flanker heterogeneity usually increases crowd-

ing strength (Põder, 2012). Interestingly, in the so-called uncrowding effect,

adding several identical flankers may reduce the strength of crowding compared

to one flanker, but making them more heterogeneous re-establishes the crowd-

ing power of the flankers (Manassi et al., 2016). Tiurina et al. (2022) have

recently shown that this effect also depends on the similarity of the key flanking

element around the target to other flankers. They found that when all other

parameters are kept constant, increasing the heterogeneity of other flankers

makes crowding stronger in line with earlier reports. But the effect of variability

was only observed when the key flanker matched the average of the other

flanker features. When the key flanker was distinct from the additional flankers,

9Representing Variability
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the size of crowding effects was at the same high level as when no additional

flankers were introduced, irrespective of variability. This suggests that variabil-

ity effects in crowding can be moderated by the similarity between flankers,

and, potentially, between targets and flankers, but again shows a clear effect of

variability.

2.3 Perceptual Averaging

The effects of variability have been studied extensively in the context of

perceptual averaging, which involves the ability to aggregate information

from multiple stimuli to estimate their average properties (see Bauer, 2015;

Corbett et al., 2023; Whitney & Yamanashi Leib, 2018, for reviews). Usually,

heterogeneity in the stimuli set is detrimental to averaging (e.g., Bertana et al.,

2021; Dakin, 2001; Im & Halberda, 2013; Li et al., 2017; Maule & Franklin,

2015; Sama et al., 2021; Semizer &Boduroglu, 2021; Solomon, 2010; Utochkin

& Tiurina, 2014; see Hochstein et al., 2018; Lau&Brady, 2018, for exceptions).

This is indeed to be expected if observers are trying to infer the stimuli from

noisy sensory samples, because the standard error of the mean is a function of

population variance and sample size. Variability in the stimuli must then affect

mean estimation performance.

Like in other cases, the effects of variability can be observed at multiple

levels of the visual hierarchy. That is, the number of stimulus subsets or the ease

with which they can be grouped is an important factor in determining the

averaging performance (Attarha et al., 2014; Attarha & Moore, 2015; Im

et al., 2020; Tiurina et al., 2022). For example, in Attarha and Moore (2015)

four clusters of several circles of varied size appeared around a fixation point

and the task of the observers was to find either the cluster with the smallest or

largest mean size. Attarha and Moore found an advantage for the judgments

when they could be performed simultaneously rather than sequentially, which

argues for a fixed processing capacity for multiple ensembles, but also that the

processing capacity for a single ensemble is virtually unlimited.

2.4 Visual Working Memory

How are working memory capacity and performance affected by variability? If

there is a single object with varying elements to be remembered, then working

memory tasks can effectively turn into averaging tasks, if observers attempt to

keep an average representation of the stimulus set in mind. As discussed

Section 2.3, averaging performance depends on variability. But interestingly,

working memory is also affected by stimulus variability in multi-stimulus dis-

plays when only a single stimulus has to be reported. Utochkin and Brady (2020)
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used a standard workingmemory task with four elements that had a varying range

of orientations. They found that for displays with a relatively narrow range of

orientations, observers remembered individual elements with higher precision

than when the range was wider. This finding is in line with the hierarchical model

of working memory (Brady & Alvarez, 2011; Haberman et al., 2015a) which

suggests that observers encode the properties of the whole stimulus set along with

the individual items and both are combined in memory reports. Since higher

between-stimuli variability decreases the precision of mean estimates (as dis-

cussed in Section 2.3 and replicated byUtochkin&Brady, 2020), the precision of

reports for individual items drops as well. So even when there is no variability at

the level of individual stimuli, the variability of the stimulus set nevertheless

affects working memory performance for these individual stimuli.

2.5 Contextual Influences

In line with the working memory studies described in Section 2.4, variability

also affects performance in tasks when the context is variable while the target

stimulus is not. Li et al. (2018) demonstrated this in a version of a flanker task,

where observers had to judge if the orientation of a central target surrounded by

distractors was clockwise or counterclockwise. When the distractors were

congruent with the target and had the same orientation (e.g., both were oriented

at 45 deg.), response times were usually faster than when distractors had an

orthogonal orientation (e.g., the target was at 45 deg. and distractors were at –45

deg.). This congruency effect is diminished when distractors have higher

variability. However, congruent distractors can also hinder responses if the

target is close to the decision boundary and distractors are further away from

it. This effect is also diminished when variability in distractor orientations is

introduced, making increased variability beneficial for performance.

2.6 Meta-cognition

Variability in the stimuli is also an important meta-cognitive cue to inform

observers’ own judgments about their perceptual performance, such as when

observers are asked to decide how confident they are about a decision (Bertana

et al., 2021; Boldt et al., 2017; Gao et al., 2023; Spence et al., 2016, 2018;

Zylberberg et al., 2014). Usually, confidence is positively correlated with

performance (e.g., Pleskac & Busemeyer, 2010), so when observers’ perform-

ance becomes worse due to increased variability in the stimuli, their confidence

about their performance tends to decrease as well. Notably, however, effects of

variability on confidence have often been observed even when performance is

unaffected. For example, Zylberberg et al. (2014) used a motion discrimination
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task with randomly moving dots. The distance to the decision boundary (e.g., 90

deg. when observers had to decide whether dots were moving in the clockwise

or counterclockwise directions) and variability in the dot motion directions in

this task both affected performance and could be manipulated independently.

This is important since it allows the dissociation of objective performance from

variability through manipulation of the distance to the decision boundary.

Zylberberg and colleagues found that when objective performance levels are

kept the same, confidence nevertheless decreases with increasing variability,

highlighting that the effect of variability on confidence is not only due to

differences in performance, and lent support to the view of a special status for

variability in visual perception.

But the opposite relationship between variability and performance and vari-

ability and confidence can also be demonstrated. For example, Gao and col-

leagues (2023) manipulated variability in the direction of moving dots while

asking observers to judge if the majority of dots were moving to the left or right.

Importantly, confidence about performance was higher while the performance

itself was worse when the overall proportion of dots moving in the target

direction was increased. This is because the authors increased not just the

proportion of dots moving in the target direction but also the proportion of

dots moving in the opposite direction among randomly moving dots. They

argued that this manipulation increases noise in sensory signals which can

lead to very strong signals which then results in higher confidence. For discrim-

ination performance, on the other hand, the ratio of the dots moving in the true

and the opposite direction might be more important as it could determine the

discriminability of sensory signals in a signal-detection theoretic model (but

note that the presence of orientation signals in motion direction might make the

explanation of these findings more complex, see Chetverikov& Jehee, 2023). In

sum, these results suggest that variability might have opposing effects on

confidence about performance, and performance itself, making it important to

model the effects of variability in computational models, to obtain precise

predictions about performance.

In other studies, meta-cognition (measured by confidence ratings) does not

seem to be particularly sensitive enough to the changes in variability. For

example, Herce Castañón et al. (2019) tested participants in three conditions

on a 2AFC orientation discrimination task with arrays of Gabor patches pre-

sented on each trial. Compared to a baseline condition, both low contrast and

high variability had similar detrimental effects on performance. However,

overconfidence (measured as the difference between mean binary confidence

and mean choice accuracy) was higher in the high variability condition than in

the low contrast condition.
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Another important observation is that it is the perceived variability rather than

the actual variation of stimulus features that seems to play a major role in this

context. Bertana and colleagues (2021) found that, paradoxically, in an orienta-

tion averaging task, objective performance deteriorates but confidence

increases from cardinal (i.e., 0 or 90 deg.) to oblique (45 or 135 deg.) orienta-

tions. The decrease in objective performance from cardinal to oblique orienta-

tions is well known in the literature as the ‘oblique effect’ and is usually

explained by the tuning of the visual system to the statistics of the visual

world, where cardinal orientations are overrepresented (Girshick et al., 2011).

In other words, the internal noise of the visual system is lower for cardinal than

for oblique orientations. But why does the confidence increase for oblique

orientations? Bertana et al. demonstrated that this increase in confidence is

related to the fact that it is easier to perceive variability in the stimulus (or,

alternatively, more noise is perceived) when internal noise is low. Hence, while

the task becomes more difficult for observers on trials with more oblique

orientations, these same observers also underestimate the amount of variability,

which, in turn, leads to higher confidence about the judgments. This surprising

finding demonstrates the importance of perceived variability for meta-

cognition.

2.7 Perceptual Learning

Are there effects of variability upon perceptual learning? Perceptual learning

has been considered unique in the literature, in that it has typically been found to

be retinotopic (or location specific) and also specific to the particular stimuli that

observers are trained on. Such specificity may make perceptual learning less

useful than it could be (Fahle, 2005). However, there is evidence that variability

in stimulation can aid the generalizability of perceptual learning. Manenti et al.

(2023) tested whether introducing variability in stimulation can ‘unlock’ gen-

eralizability in perceptual learning. While their subjects were trained on an

orientation task, variability on an irrelevant feature (spatial frequency) was

introduced. This manipulation led to generalization to other locations and

stimuli while the perceptual learning itself was unaffected. Similarly, Hussain

et al. (2012) tested perceptual learning of textures, finding that the learning was

specific, suffering when textures were rotated or changed in polarity, for obser-

vers who had trained on the same ten standard stimuli. But for groups whose

learning had proceeded on more variable sets of stimuli, performance was not

affected. This shows how perceptual learning is adaptable and can generalize,

and that variability can aid with this. Hussain and colleagues argued that

‘increasing stimulus variability by reducing the number of times stimuli are
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repeated during practice may cause subjects to adopt strategies that increase

generalization of learning to new stimuli’ (p. 89). Other forms of learning might

benefit from variability as well. For example, Higuchi et al. (2020) found that

contextual cueing (which involves visual search with a consistent association

between the target and distractor locations that observers learn over trials) can

also benefit from variability in stimuli locations. Corpuz and Oriet (2022) then

demonstrated that variability can also be helpful in learning facial identities.

Overall, the more varied the input, the longer the learning takes, but the benefit

of this increased variability seems to be that the learning becomes more general

(Raviv et al., 2022).

2.8 Summary

The overview in Sections 2.1–2.7 illustrates how variability within groups of

stimuli strongly affects performance in a variety of cognitive and visual

tasks. Many studies show how higher variability is generally detrimental to

performance, although it can become beneficial under certain specific cir-

cumstances. On the one hand, this is clearly expected and can be seen as an

effect reflecting the signal to noise ratio in the stimuli. When observers have

to combine information from multiple stimuli (e.g., estimate their mean

feature value or other properties needed for a given task), variability

increases the noise, resulting in a negative effect on performance. On the

other hand, noise in irrelevant distracting information can reduce its effects

on performance, which can sometimes be helpful as can be seen in flanker

interference (Li et al., 2018).

The first notable caveat is that we show in Sections 2.1–2.7, variability must

be considered at different levels of the information processing hierarchy. Higher

variability at the level of individual stimulus features might mean that they will

tend to be grouped together, leading to lower variability at the level of clusters

or groups of stimuli. Secondly, as shown by Bertana et al. (2021), perceived

variability might be more important than actual variability, at least for meta-

cognition. While it is reasonable to suspect that perceived variability (rather

than actual variability) might be important for other tasks as well, especially for

grouping, to our best knowledge, this line of research has not been explored yet.

Lastly, the effects of variability might be observed even if the stimulus itself

does not vary while the context varies, even when the context is irrelevant to the

main task that observers have to perform. This has been observed in working

memory studies (Utochkin & Brady, 2020) and flanker tasks (Li et al., 2018). In

summary, variability adds noise, which is often, but importantly not always,

detrimental to the performance.
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3 How Is Variability Represented?

An important consideration is that even if variability affects perceptual per-

formance, that does not necessarily mean that the information about variability

is represented anywhere in the visual system. While this might seem counter-

intuitive, averaging tasks can provide a clear example of why this is the case. If

a participant is, for example, asked to compute the average colour from a set of

colour patches, one viable strategy could be to sample one or several patches

and then average their colours. If all the patches have the same hue, the task is

very easy and can be performed by selecting just one patch. If they have

different colours, this single stimulus strategy will now introduce an error

even if the participant does not keep track of how variable the colours are.

Here, variability therefore affects performance, and larger variability would in

this case lead to poorer performance without any explicit representation of

variability since the observer here just selects one (or multiple) patches. This

is similar to the well-known difference between noise and uncertainty in the

classic Bayesian perception literature (see, e.g., Ma, 2019), with the exception

that variability representation does not necessarily mean uncertainty represen-

tation (see Section 1.3). So while variability affects performance in visual tasks,

is it also represented, and if so, how?

Demonstrating that variability is represented, however, is not a simple task

because in many cases (as we show in the following sections) there could be

alternative ways of explaining empirical findings without presupposing explicit

representations of variability. And in fact, within the field of vision science, it

has been proposed that variability is not represented in detail, but instead only as

summaries (Alvarez, 2011) and that any feeling that we may have for such

detailed representations is illusory (Cohen et al., 2016; Noe et al., 2000;

Rensink, 2000). In the following, we will discuss the approaches that have

been used to test to what degree observers keep track of variability in the visual

world (Figure 3).

3.1 Testing Variability Representations Explicitly

3.1.1 Forced-Choice Comparisons

Psychophysics has for a long time been a gold standard in vision science. By

using forced-choice tasks in particular, one can show that observers are sensi-

tive to diminutive changes in visual stimulation, for example, whether or not

a single photon hits their retina (Hecht et al., 1942; Tinsley et al., 2016). Using

diverse psychophysical approaches, through mostly forced-choice compari-

sons, many studies have demonstrated that observers can discriminate between
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Figure 3Variability representations can be tested implicitly or explicitly. In one explicit method observers are instructed to assess variability

in the stimulus and then report it. The report can have different for) For example, observers can be asked to adjust the height of the bars on

https://doi.org/10.1017/9781009396035 Published online by Cambridge University Press
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Caption for Figure 3 (cont.)

a histogram to match the frequency or the probability of different feature values (see, e.g., Oriet & Hozempa, 2016). Alternatively, more

classic psychophysical methods such as 2AFC or adjustment tasks can be used. In 2AFC tasks, observers are asked to compare the variability

of the target stimulus with an alternative. In the adjustment task, observers adjust the variability of the stimulus (e.g., stimuli clockwise to the

mean would be rotated one way, and stimuli counterclockwise to the mean would be rotated in the opposite way, increasing or decreasing

the variability of the set as a whole). Implicit methods, on the other hand, do not instruct observers to assess variability, assuming instead that the

variability is automatically picked up during the course of the task. For example, in the membership identification task (see, e.g., Khayat &

Hochstein, 2018) observers first see a sequence of stimuli and are then asked to determine which of the two test stimuli belongs to the set they

saw. Variability of the set would affect the judgments of the test stimuli even though observers are not asked to assess variability. The Feature

Distribution Learning method (Chetverikov et al., 2016) uses a visual search task instead. During several learning trials, observers are asked to

find the odd-one-out target among the set of distractors. Unbeknownst to them, distractors on each trial are randomly drawn from the same

feature probability distribution. Then, on a test trial, the response times to a target as a function of its similarity to the previously learned

distractor distribution, are used to infer how this distribution is represented. See detailed description of the different methods in the main text.
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sets of stimuli differing in their variability (e.g., Atchley&Andersen, 1995; Cha

et al., 2022, 2022; Dakin, 2001; Hansmann-Roth et al., 2021; Harrison et al.,

2021; Lathrop, 1967; Lau & Brady, 2018; Morgan et al., 2008; Tokita et al.,

2016; see Bauer, 2015; Corbett et al., 2023; Whitney & Yamanashi Leib, 2018

for reviews). The fact that observers can discriminate the variability of stimulus

sets necessarily implies that variability is represented in some way. Unlike other

tasks where variability could affect performance without being represented, it is

impossible to compare variability itself among sets without representing it to

some extent. For example, sampling just one item from each set would not allow

any comparison of variability, and sampling two items and computing the

differences within each set would result in a primitive range-based representa-

tion. It can be conscious or unconscious, but something is retained. How exactly

is it represented? To answer this question, hypotheses can be tested about

observers’ performance in forced-choice comparisons under different assump-

tions about representations of variability.

For example, several studies have addressed whether information about

variability is represented independently from information about the mean of

the visual feature (Jeong & Chong, 2020; Maule & Franklin, 2020; Norman

et al., 2015; Tong et al., 2015; Ueda et al., 2023). The question, in other words, is

whether there are separate representations of variability as a summary statistic

of some kind or whether this is closer to a representation of a probability

distribution of visual features, where different parameters such as the mean or

variance are bound together? The results on this are unfortunately inconclusive,

so far. Norman et al. (2015) and Maule and Franklin (2020) found that after

adaptation to an ensemble with a given variability in hue or orientation, obser-

vers are biased when they have to perform a variability discrimination task. This

happens even when the mean of the feature is varied randomly (Maule &

Franklin, 2020; Norman et al., 2015) or is orthogonal between the adaptor and

the test stimulus (Norman et al., 2015). Interestingly, there is even evidence for

adaptation across visual feature domains (from orientation to colour and vice

versa, Maule & Franklin, 2020) and some limited evidence for adaptation

effects between auditory and visual variability (Ueda et al., 2023). If the

adaptation to variability has effects regardless of the mean or feature, this

may reflect that the variability is represented separately from the mean, at

least at some stage of processing. However, Jeong and Chong (2020) found

that the adaptation to the mean orientation affects variance when the mean of the

adapter and the test orientation are similar (presumably due to tilt after-effects)

but not when the means are orthogonal. At the same time, they found that

adaptation to ensembles with high or low variance affected the sensitivity of

mean discrimination. These results suggest that mean and variance statistics are
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at least to some extent interrelated. Similarly, Tong et al. (2015) found that the

discrimination of brightness variance is impaired when stimuli have different

mean brightness. More research in this direction is therefore required to test

whether variance is represented separately from the mean in a general sense, or

if this only happens under some specific circumstances.

Lau and Brady (2018) suggested that the range heuristic, where the range (i.e.,

the difference between minimal and maximal values) is used as a heuristic proxy

for variability, plays an important role in judgments of variability. The range is

usually increasedwhen variability is increased, and Lau andBrady postulated that

range might be easier to compute than variance because it only requires finding

the minimum and the maximum (although note that algorithmically finding the

range is almost as complex as finding the variance, as both require iterating

through all the items in a set once). They asked observers to determine which

of two briefly presented sets of circles had higher size variability. On each trial,

the sets differed in the variability and range of the sizes of the stimuli. When the

two statistics were congruent (i.e., one set had a higher range and a higher

variance), the observers more often selected the ensemble with higher variance

thanwhen theywere incongruent. This suggests that people utilize both range and

variance when asked to discriminate stimuli based on variability, potentially

representing both measures during the decision-making process.

Jeong and Chong (2021) suggested that reliance on both the range and

variance in variability estimates can be ascribed to variance-based estimates

that account for item reliability. For example, outlying items can be automatic-

ally discarded in variability computations as not belonging to the same stimulus

and items having higher contrast might be prioritized (see also findings on

amplification in summary statistics judgments Iakovlev & Utochkin, 2021;

Kanaya et al., 2018). From this perspective, incongruent stimuli pairs in Lau

and Brady (2018) might result in poorer perceptual performance since the

answer is counted as correct or not based on variance while observers actually

use weighted variance to perform the task. More broadly, however, this high-

lights the difficulty of going beyond the ‘can observers discriminate stimuli

based on variability’ question with classic psychophysics. The reason is that the

answer in the variability discrimination task depends on the meaning observers

apply to it. Answering this question might, therefore, be better suited to more

implicit tasks than direct, explicit report tasks (see Section 3.2).

3.1.2 Adjustment Tasks

An alternative to forced-choice tests, also widely used in psychophysics, is the

adjustment task. In such tasks, observers are asked to adjust the variability of
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a test set to match the variability of previously presented stimuli (Haberman

et al., 2015b; Khvostov & Utochkin, 2019; Tokita et al., 2020). This method is

seldom used, however, presumably because of the difficulties with manipulat-

ing the variability in an adjustment procedure (it is not clear how to change

individual items when the variability of the set is to be increased or decreased).

One approach is to shift each stimulus of the set by some amount in the feature

space away or towards the mean (Figure 3).

Nevertheless, studies using this method have demonstrated that observers can

successfully match the statistics of a comparison set, such as the range or

variance of the set. Interestingly, Tokita et al. (2020) provided preliminary

evidence that variability estimates for one dimension (e.g., size) can be repro-

duced by adjusting the variance in another dimension (e.g., orientation). This

aligns well with data from studies where variance was estimated on a rating

scale (Payzan-LeNestour et al., 2016; Suárez-Pinilla et al., 2018) and these

results suggest, once again, that people can have an abstract representation of

variability, or in other words that variability can be represented independently of

any single particular stimulus dimension.

3.1.3 Explicit Reproduction of Distributions

Perhaps, the most straightforward way of assessing how variability is estimated

is simply to ask observers to reproduce their impression of the variability within

a set of stimuli. Ideally, such a procedure would involve an actual reproduction,

for example, by drawing, or painting, a copy of an ensemble. However, this is

obviously not only technically challenging, but also difficult in terms of

a suitable measurement task, and, to our best knowledge, has not yet been

done. Oriet and Hozempa (2016) used a related approach, where participants

were asked to create a histogram of sizes for stimuli they saw by adjusting the

height of the bars on a plot shown on the screen. They found that observers were

quite inaccurate on this task, incorrectly reporting the range and the central

tendency parameters of ensembles. For example, observers often indicated that

stimuli included circles with very small sizes that were not present in the actual

display. At the same time, when the displays had higher variability, the repro-

duced distributions also had higher variability, and observers were able to

reproduce the skew in the displays as well.

Tran et al. (2017) have also demonstrated that it is difficult to explicitly

reproduce a probability distribution when the learning of the statistics occurs

over extended periods of time. Participants performed a computerized whack-

a-mole game for 180 trials and were then asked to reproduce the distribution of

the locations where the items to ‘whack’ appeared. The tested distributions were
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in some cases bimodal, and the only case where there was any remote evidence

of the learning of bimodal distributions was when the bimodality was extreme,

with zero probability density (or no exemplars) at the mean. Otherwise, the

reproductions showed no evidence of any learning of distribution shape. This

suggests that only strong and clearly noticeable patterns occurring over longer

time periods become explicitly registered and represented by observers.

As also noted by Oriet and Hozempa (2016, p. 10), explicit reproduction is

a considerably complex task and it requires a lot of effort from participants.

They have to first transform their visual representations into frequency distribu-

tions and then report them by transforming these frequencies into the responses

in terms of histogram bar lengths (or the number of clicks on different locations

in Tran et al., 2017). Such a double transformation might introduce substantial

noise and biases in the reports, making the results difficult to interpret. But are

there other possibilities than testing explicit reports of variability and distribu-

tion characteristics? One example of such a task is the recently developed

feature distribution learning method (Chetverikov et al., 2016, 2017a, 2019;

Chetverikov & Kristjánsson, 2022).

3.2 The Feature Distribution Learning Method and Other Implicit
Approaches

Given the limitations of explicit tests discussed in Section 3.1, what other

options are available to assess the internal representation of stimuli vari-

ability? Several approaches have been developed to assess representations

of variability from behavioural responses without explicitly requiring

observers to report (e.g., discriminate or estimate) variability (Acerbi

et al., 2012; Chetverikov et al., 2016; Sama et al., 2021). Such implicit

tests assume that observers have an internal model of variability in the

stimulus and use it to guide their interactions with heterogeneity in the

environment. The assumption is that such models can then be inferred by

observing responses to different varieties of heterogeneous stimulus

ensembles.

We will, in particular, highlight an exciting new method, feature distribution

learning (FDL, Figure 4), introduced in Chetverikov et al. (2016) that is

designed to address the question of how variability is represented (see

Chetverikov et al., 2019 for a tutorial of the method). Chetverikov et al. started

with the question of whether variability is represented only as summaries (such

as the mean, and then variance or range). Or is more information represented

than argued by advocates of the view that the detail we think we perceive in the

environment is mostly illusory (e.g., Cohen et al., 2016; O’Regan & Noë, 2001)?
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Figure 4 Feature distribution learning (FDL): An implicit approach to study variability perception. A. A typical FDL study consists of

intermixed learning and test trials. Observers search for an odd-one-out target among a set of distractors. On learning trials, distractors are

https://doi.org/10.1017/9781009396035 Published online by Cambridge University Press
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Caption for Figure 4 (cont.)

randomly drawn from the same probability distribution on each trial while the target varies randomly with the important constraint that it

remains dissimilar to distractors. The observers’ performance quickly improves through the formation of a representation of distractors

(bottom-left). On test trials, their knowledge of distractors is put to a test by introducing a target that can be more or less similar to previous

distractors. B. Computational modelling (in Chetverikov & Kristjánsson, 2022) shows that for an ideal observer, the response times on test

trials should be monotonically related to the expected probability of encountering a distractor with an orientation matching the test target, or

in other words, distractor representations determine the response times. C. The relationship between representations and response times

enables the recovery of the former from the latter. By collecting the data over many trials (dots in the left plot), the average response time

curves (lines in the left plot) are transformed to obtain probability distributions corresponding to distractors (right plot). In addition to the

overall shape of the distribution, their parameters such as the mean expected orientation and representation SD can then be analysed. This

figure is based on Figures 1 and 2 from Chetverikov & Kristjánsson (2022) provided under CCBY-4.0 license.
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The feature distribution learning method takes a novel approach to studying

how representations of visual ensembles are formed. Rather than asking

observes explicitly which ensemble has a higher mean, variance and so on,

the representations are assessed indirectly and implicitly through effects upon

response times and accuracy during visual search tasks. When observers have

to respond to an unexpected target (such as when they have previously learned

that the current target belongs within the range of possible distractors) their

responses are slowed considerably (Chetverikov & Kristjánsson, 2015;

Kristjánsson & Driver, 2008; Lamy et al., 2008; Wang et al., 2005).

Importantly, this approach can reveal observers’ learned representations of

environmental statistics (Chetverikov et al., 2019).

3.2.1 Learning the Variability within the Visual World

When we open our eyes, it can take a while for us to understand our visual

environment. While the basic details are available, various other nuances may

take longer to make sense of. A good example is when you look down at

a stream from a bridge. Someone tells you that there are small fish swimming

all over the place in the stream, but you do not see any fish no matter how hard

you try. But then suddenly you see a fish, and at that point, you can easily see

that the fish is all over the place in the stream, akin to a phenomenon sometimes

called ‘perceptual insight’ (e.g., Rubin et al., 1997). This is an example of how

we can learn the statistics of the environment. Another example could be when

we are assembling a jigsaw puzzle, over time and repeated exposure to the

statistics within the image that we are assembling, we gradually learn where

pieces with particular characteristics are likely to belong, a task that seemed

almost impossible when we started assembling the puzzle – again, we learn the

key statistics of such visual tasks over time. We learn over time that the patch of

grass that seemed uniform, tends to have some positional nuances in feature

values at a closer look.

Improved perception over time has been investigated in the perceptual

learning literature, where experience-dependent improvements in our ability

to make sense of what we see have been demonstrated (Gold & Watanabe,

2010). This training-induced perceptual learning (Seitz & Watanabe, 2005) can

involve longer-term changes in perception (Karni & Sagi, 1991), even involv-

ing demonstrable changes at the neural level (Schwartz et al., 2002). But there is

also an adjustment to the environment on shorter timescales, that is more

fleeting and opportunistic and is more easily overridden by new input. Recent

evidence where the feature distribution learning method has been used has

revealed how this can occur (see review in Chetverikov et al., 2017a).
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3.2.2 Feature Distribution Learning Relies on Expectations

The feature distribution learning method relies on a simple principle: As we

learn the characteristics of the environment, we come to expect certain basic

properties that reflect these regularities. When our expectations are violated,

this interferes with visual and attentional processing and this interference can

cause measurable changes in behaviour – such as slowed processing of certain

stimuli or decreased accuracy.

Let’s say that you are picking blueberries. Over time you adjust your berry

collecting (or ‘foraging’) to the mean and range of the colour variation of the

ripe berries and at the same time learn the colours of what are not your targets

(green leaves and nonripe green berries). Just as in the example with the fish in

the stream, in Section 3.2.1, your visual system becomes better (or gains

expertise, at least in the short term) at performing this task, despite large

variations in lighting, shadows or reflection that can differently affect the actual

reflectance and colour values of individual berries (Kristjánsson, 2022).

Analogies of such scenarios can be generated with computer displays involv-

ing tasks where observers are asked to find the oddly coloured item, for

example. Once the participants have learned the properties of the environment,

what happens when these properties are suddenly changed? Let’s say that after

searching for blue among green (as in the berry example in the previous

paragraph), you are suddenly supposed to search for a green target within an

environment that is made up of stimuli having various shades of blue instead of

green. The FDLmethod relies on the fact that your representation of the learned

environment can be assessed by how strongly your visual search performance is

affected by this sudden change in the environment. These effects have been

called role-reversal effects, in that a target of your search becomes part of the

information that you are supposed to ignore, and vice versa, relying on findings

from the literature on priming of attention shifts where when a target feature

over a sequence of trials suddenly becomes the feature to ignore (the distractor

colour, Chetverikov & Kristjánsson, 2015; Kristjánsson & Driver, 2008; see for

example Kristjánsson & Ásgeirsson, 2019; Nakayama et al., 2004; Failing &

Theeuwes, 2018 for review and see also Ramgir & Lamy, 2022 for some

alternative views on priming in visual search).

The key point is that the green colours (or leaves of the berry bush, if we

continue with the berry-picking analogy) have a distribution, they have a mean

value, and a variance, but even more importantly, they may have distributions

with various properties. Most of the leaves may have a relatively similar shade

of green while a few may have started turning yellow, resulting in a colour

distribution that is skewed towards yellow but has a mean at green. The key
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aspect of the FDL method is that the interference effect from the role-reversals

(measured in response times) is sensitive to the distribution that you have been

exposed to and have therefore become accustomed to during the task – or have

learned in other words.

3.2.3 Feature Distribution Learning: An Example

The feature distribution learning (FDL) methodology was introduced in

Chetverikov et al. (2016, see 2019 for a tutorial on FDL). Chetverikov et al.

(2016) asked their observers to search for an oddly oriented line in

a heterogeneously oriented set of distractor lines and respond whether the

oddly oriented target was in the top three rows or bottom three rows of a six-

by-six array of lines. The thirty-five distractor lines all came from a certain

distribution while the target was randomly chosen from outside the range of the

distractor distribution. Observers searched for a target among distractors from

the same distractor distribution for four to six trials in a row (termed ‘learning

trials’ since they were introduced for learning the statistics of the distribution).

The learning was confirmed by showing that response times during the learning

trials became faster and more accurate the more often the distractors from the

same orientation distribution were presented on consecutive learning trials. But

what information exactly do observers pick up on those learning trials?

After each sequence of learning trials in Chetverikov et al. (2016), observers’

expectations were implicitly assessed on a so-called test trial (the observers

were unaware that this was a test trial – to them this was just another search

trial). The target and distractors were now selected randomly from the whole

orientation feature space with the restriction that the distractors had to be

sufficiently different (60–120 degrees apart) from the target to keep the search

from becoming too difficult. This simple paradigm enabled the uncovering of

internal representations of previously learned distractor distributions. Recall

that the role-reversal effects are assumed to reflect violations of expectations

(Chetverikov & Kristjánsson, 2015; Kristjánsson & Driver, 2008). The size of

the role-reversal effect may therefore be assumed to reflect the degree to which

a given feature value is expected or unexpected relative to other features

(Figure 4B). If observers learned the distribution on the learning trials, we

might speculate that this distribution learning would be reflected in the role-

reversal effects. And the results of Chetverikov et al. (2016) were indeed the

first to confirm that the variability of the previously learned distribution is

reflected in the shape of the curve showing the role-reversal effects (measured

in the response times). That is, distributions with a larger range had a ‘wider’

response time curve, and the highest point of the RTcurve (depicting the largest
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role-reversal effects) was at the mean of the distribution. This matches findings

with other approaches discussed in Section 3.1, suggesting that variability in

environmental stimuli is encoded by the visual system.

However, the most important lesson from the results in Chetverikov et al.

(2016) was that observers encoded variability at a surprisingly high level of

detail: If the shape of the learning trial distribution was Gaussian, the shape of

the curve showing the role-reversal effects (in response times) reflected this,

while if its shape was uniform, this was also reflected in the shape of the curve

reflecting the role-reversal effects (Figure 5A). Notably, the range (or, in

another experiment, standard deviation) of the two distributions was equated.

These results demonstrated that observers could learn the shape of distractor

distributions, and that the distributions are not simply represented as a mean and

then perhaps with an estimate of the variance in the ensemble. Notably

Chetverikov et al. (2017b, experiment 2) then demonstrated that learning of

whether distributions are uniform or Gaussian could emerge after only two

learning trials (in other words, two ‘exemplars’) from the distribution, showing

that these statistics could be quickly picked up, although there was also clear

evidence that the representations became more accurate with more learning

trials.

As Chetverikov et al. (2019) argued, the FDL methodology and logic are in

many ways similar to neurophysiological decoding measures used, for example,

in fMRI and EEG studies. The responses on individual trials are used to estimate

the otherwise unobservable internal representation of a complex visual stimu-

lus. The FDL method might be considered a behavioural alternative to those,

enabling an understanding of how information is represented in the brain. For

example, fMRI decoding has revealed the uncertainty in visual representations –

where the likelihood of a stimulus can be decoded (Chetverikov & Jehee, 2023;

van Bergen et al., 2015) and similar findings on decoding have emerged in

neurophysiology (Walker et al., 2020). However, FDL is limited in predicting

representations on single trials because of the sparse data that is available, so the

aggregate representations are analysed instead (but see Chetverikov et al., 2020

where double-target search is used to overcome this problem).

3.2.4 Learning Colour Distributions

After demonstrating how observers can learn to distinguish Gaussian and

uniform orientation distributions, Chetverikov et al. (2017c) then tested the

learning of colour distributions, again using the feature distribution learning

method. This time the observers had to find the oddly coloured diamond among

a large set of distractor diamonds (thirty-five in total) and then report whether
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Figure 5 Feature distribution learning shows that variability in the visual world is encoded at a high level of detail. A. Observers encode

different distribution shapes. Even though the stimuli generated from a uniform and a normal distribution, or two triangular distributions

(bottom) might look similar, FDL studies shows that observers take into account the differences between them. The response time curve for

a uniform distribution (orange) is flat within the range of the distribution (dashed lines) matching the distribution probability density function

shown below. In contrast, for a normal distribution, the response times decrease monotonically, again matching the distribution shape. For

the two triangular distributions, the response times curves are skewed following the corresponding probability density functions. Finally, for

https://doi.org/10.1017/9781009396035 Published online by Cambridge University Press
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Caption for Figure 5 (cont.)

a bimodal distribution, the response time curves also indicate bimodality. Plots are based on the data from Chetverikov et al. (2016, 2017b).

B. When stimuli vary differently in different parts of the visual space, this is reflected in the properties of recovered representations. For

example, when left and right hemifields have orientation distributions with different means, the mean expected orientation (MEO, see

Figure 4 and the main text for details) track these differences. The reconstructed maps of MEO match the true distribution mean (±20°).

However, there are also biases as the MEO’s are shifted towards the other distribution at the boundaries between them (i.e., for central

columns in the hemifields arrangement, MEO are shifted towards 0° while for other columns they match the true means precisely). This

demonstrates the hierarchical nature of mental representations: rather than simply being based on the visual input at a given location, the

information is integrated from multiple neighbouring patches. This figure is adapted from Figure 3 from Chetverikov & Kristjánsson (2022)

provided under CCBY-4.0 license.
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the target diamond had a notch at the top, bottom, right, or left (all of the 36

stimuli had notches at one of these locations). Again, the distractors on learning

trials came from different distributions (this time, colour distributions). The

colours were selected from a psychophysically linearized colour space (Witzel

& Gegenfurtner, 2013, 2015) to avoid unwanted influences from nonlinearities

in colour space. Chetverikov et al. (2017c) found that response times during the

learning trials became faster and accuracy increased as the distractors from the

same colour distributions were consecutively presented. The role-reversal

effects followed the distributions from the learning trials, showing how obser-

vers could learn the full distributions of colour ensembles – more specifically,

whether they were uniform or Gaussian. This result was quite surprising, since

subjectively, the search among the two distributions appeared to be quite

similar. It was also important in demonstrating learning of distribution shape

for another dimension than orientation, increasing the generalizability of the

original FDL findings on orientation in Chetverikov et al. (2016).

3.2.5 Sensitivity to Different Statistical Aspects of Distributions

Learning of more complex distributions than uniform or Gaussian distributions

has since been tested. Initially, Chetverikov et al. (2016, experiment 4), demon-

strated that not only could observers determine whether the distractor distribution

was uniform or Gaussian, but observers could even learn whether the distribu-

tions were positively or negatively skewed (triangular distributions in Figure 5A).

Even more surprisingly, in Chetverikov et al. (2017b) observers were then able to

learn whether oriented distractor lines presented during learning trials were drawn

from a unimodal or bimodal distribution (see also Chetverikov et al., 2020). But

interestingly, this learning of bimodality only emerged after a larger set of

learning trials than for example learning of uniform versus Gaussian distributions

(or approximately eight trials), with thirty-five exemplars from the distribution on

each trial (Chetverikov et al. 2017b, experiment 2, had shown that basics of

distributions could be learned within two trials). In essence, this makes sense,

since with increasing complexity more information should be needed to deter-

mine the true nature of the underlying distribution. This is a very clear example of

the learning and representation of high-complexity ensembles that go far beyond

any representations of summary statistics.

3.2.6 Are Irrelevant Distribution Statistics Learned?

Hansmann-Roth et al. (2019) investigated how much information can be

learned simultaneously about different aspects of feature distributions. The

detailed learning for colour and orientation shown separately in previous
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experiments already involved the learning of large amounts of information –

potentially quite taxing for the visual system if the goal is to pick this

information up in ‘parallel’ for different feature distributions. Importantly,

the distributions in these previous cases were always task-relevant. In the

initial attempt of Hansmann-Roth et al. (2019), two feature dimensions could

simultaneously vary while the participants searched for lines of differing

orientations and colours, that could vary simultaneously but importantly did

so independently. The aim of Hansmann-Roth et al. was to measure whether

an irrelevant feature distribution influenced the learning of a task-relevant

distribution. While considerable learning of feature distributions was

observed, in particular for colour, the results also showed that a second

irrelevant feature distribution (in this case orientation) could not be learned

in detail (while some basic aspects of these distributions were learned). The

results of Hansmann-Roth et al. therefore revealed notable limitations on what

information can be learned, at least within similar time periods as the orientation

learning, or colour learning, on their own, could occur in.

Pascucci et al. (2022) then tested the role of the task in feature distribution

learning. Instead of an active search task during the learning trials, observers

passively viewed the displays on the learning trials and role-reversal effects

were then tested as in previous FDL experiments. Specifically, Pascucci et al.

(2022) tested whether the learning of the visual feature distributions occurs

during passive viewing of the ensembles. Note that feature distribution learning

had in all previous demonstrations been found in tasks requiring active visual

search for a singleton target that differed from the distractors. Also, the results

of Hansmann-Roth et al. (2019) suggested that the shapes of task-irrelevant

distributions are not picked up. The results of Pascucci et al. showed that

passive exposure to distributions of visual features in the absence of an explicit

search task led to similar role-reversal effects as previously seen (although the

difference between uniform and Gaussian distribution shapes was not signifi-

cant). But in an important manipulation they found that passive viewing of

displays containing no target (in other words, no orientation singleton) did not

lead to distribution learning. So while active search was not required, the

presence of a singleton was necessary. Pascucci et al. speculated that the

irrelevant singleton triggered attentional capture on passive trials. This may

have led to the automatic segmentation of the oddly oriented item from the rest

of the stimuli, which may have created at least a coarse representation of the

shape of the underlying distribution. But importantly, they found that this did

not occur without the singleton. Pascucci et al. (2022) speculated that the

automatic singleton detection created a relatively coarse representation of

the statistical distribution that the rest of the items came from. Active search
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for the singleton as in other FDL experiments enables, on the other hand, a more

precise representation of the distractor distribution to emerge.

It is interesting to compare these findings with what has been observed in the

literature on summary statistics. There is indeed evidence in the summary

statistics literature that task-irrelevant statistics can be learned (Oriet &

Brand, 2013). Chong & Treisman (2003) argued that ‘statistical descriptors’

are computed automatically when attention is distributed over a display, which

could mean that they are picked up ‘for free’, or do not require explicit

encoding, nor claim resources. Also, when irrelevant variation in stimuli is

predictable, this can aid visual search (Corbett & Melcher, 2014). Oriet &

Hozempa (2016) tested observers’ ability to reproduce global statistical char-

acteristics of a set, after they attended to properties irrelevant to this judgment.

While observers were able to producemean and endpoints of a distribution there

was little or no evidence of any learning of distribution shape. So the summary

statistics literature seems to indicate that some learning of irrelevant ensembles

can occur, although there also seems to be evidence that there are notable limits

on this (see also Hansmann-Roth et al., 2021, and further discussion in

Sections 3.2.11 and 3.3).

3.2.7 Do Observers Integrate Information about Different Feature
Distributions and Their Spatial Locations?

At this point, we can ask whether the feature distribution learningmethod enables

insight into how more complex visual representations that covary on more than

one feature, or are tied to certain spatial locations, can be built. Can information

about different distributions be combined, which would seem like a necessary

step for this information to be used for the building of representations of real-

world scenes and objects? This question was addressed in Chetverikov &

Kristjánsson (2022), and their results involved a key demonstration. They won-

dered whether the representations that are uncovered in FDL studies can provide

the basis for ‘normal’ vision within more complex multidimensional environ-

ments. The aim was to understand whether the visual system has access to

information about not only how the features are distributed, but also where they

are and what other features they may be combined with. Note that this is

a different question from the one asked byHansmann-Roth et al. (2019, described

in Section 3.2.6) who investigated simultaneous learning of two unrelated distri-

butions (one of them being task-irrelevant) but the question that Chetverikov &

Kristjánsson (2022) investigated revolves around their integration.

Chetverikov and Kristjánsson (2022) randomly split the distractor set on each

trial in two parts that differed in their orientation distributions. These two parts
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were then assigned different colours or placed in separate locations.

Chetverikov and Kristjánsson then tested whether observers associate a given

colour (location) with a given orientation distribution by using test targets of

different colours or in different locations. But, unsurprisingly perhaps, the

representations were noisier (i.e., had higher standard deviations) when orien-

tation was paired with colour compared to the condition where the two orienta-

tion distributions had different spatial locations. When the display was split into

four columns by orientation, instead of split by half, there was still integration of

spatial information with the orientation distribution, but again, it was more

noisy. Furthermore, in both cases there was noticeable skew in the recovered

probabilistic representations, indicating that representations of orientation dis-

tributions of different colours or placed in different locations had a mutual

influence on the response time curves.

Chetverikov and Kristjánsson (2022) also showed that the representations are

hierarchical in nature. This was evident from the bias in recovered representa-

tions towards the other distribution of colour or location that can be seen in

a ‘map’ of recovered mean expected orientation for the case of location-

orientation combination (Figure 5B). When the left and the right visual field

have different orientations, the bias occurs on the boundary between them,

suggesting that observers account for local as well as global differences in

distribution parameters. This means that the variability of visual stimuli is

represented at different levels.

The variation on the FDL method that Chetverikov & Kristjánsson (2022)

used, essentially involved assessing the interactions of different distributions

(location and orientation on the one hand and orientation and colour on the

other). Chetverikov & Kristjánsson (2022) found that observers can not only

encode feature distributions in scenes containing two different distributions but

more importantly, also combine them. The results revealed that observers’

representations tended to reflect the physical distribution of the stimuli for

a given location or a given colour. This showed that not only can distribution

representations for different features (colour and orientation) be bound together

but they can be bound with locations as well.

The key insight was therefore that variability in distributions can be repre-

sented, but most importantly, that the variability can be integrated with spatial

locations and other features (colour) that are differently distributed across the

visual field. Chetverikov &Kristjánsson (2022) argued that these results were the

strongest evidence available for the idea that the brain builds probabilistic

representations of incoming visual stimuli (see Section 4.2). The important

bottom line from this work was that it demonstrated how probabilistic represen-

tations can be generated and integrated across feature dimensions, and can then
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serve as building blocks for higher-level visual processes such as object construc-

tion and scene processing. Again, this result argues strongly against accounts of

visual representations that assume that they are based on summary statistics.

3.2.8 Are Representations of Environmental Statistics Accurate
at Individual Time Points?

Like most other approaches that involve implicit assessment of the key vari-

ables, feature distribution learning studies rely on the aggregation of data from

many trials to infer the properties of mental representations. This places limits

on what can be inferred about the representation of variability at a given

moment in time. It is always possible that what appears, for example, as

a bimodal representation when the data is aggregated, is a combination of

unimodal representations with different mean values on different trials.

To address this issue, and to assess whether the feature representations FDL

studies have revealed are accurate at individual time points, Chetverikov et al.

(2020) used a dual-target paradigmwhere observers had to find two targets on each

trial. This manipulation was important as it allows the sampling of two points of the

represented distribution at an individual time point (instead of the aggregation over

time in the previous FDL studies that are described above). This can provide a more

accurate estimate of the shape of what is represented at a given moment.

Chetverikov et al. (2020) tested the learning of a bimodal distribution and, as in

Chetverikov et al. (2017b), targets on test trials which could correspond to various

regions of orientation space that distractors on preceding trials were drawn from,

and could, for example, have feature values that fall in between the modes of the

bimodal orientation distribution, or that fall outside the range of the previous

distribution.

Observers were told that they should respond to each of the two targets as

soon as they found them. Importantly, they were told not to wait until both

targets were found but to report by keypress in which quadrant of the search

display the target was as soon as they found it and only then find the next one.

Similar logic of learning trials followed by test trials as used in other FDL

studies was used for this paradigm, where role-reversal effects between target

and distractor distributions were measured.

Under a strong version of a probabilistic account of visual representations,

the templates would include information about both peaks of a bimodal distri-

bution as well as the trough between them (see, e.g., Tanrıkulu et al., 2021a). In
other words, the assumption is that observers would develop an accurate

internal model for the task and the template would accurately reflect the

information about the full probability distribution. Alternatively, the templates
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might include only a single peak (e.g., the attended one), or might reflect only

the summary statistics denoting the midpoint between the two distributions. For

the two-target search task, Chetverikov et al. (2020) reasoned that if observers

accurately encode a bimodal distribution, on test trials with a target on a peak

and a target between peaks of the learning distribution, targets between the

peaks (associated with a lower distractor probability) should be reported before

targets on peaks, reflecting that they are easier to find. If only one peak is

encoded or if the whole distribution is averaged, targets on peaks would be

associated with a lower distractor probability and should be reported no later

(showing no increase in role-reversal effects) than targets between the peaks

(associated with lower distractor probability in this case).

The results clearly indicated that observers’ representation of the learning

distribution was bimodal – and importantly bimodal at individual moments in

time. Observers were slower to find targets on the peaks of the bimodal learning

distribution while targets outside the learning distribution were found the fastest.

The slowest response times occurred when the two targets came from the two

peaks of the bimodal distribution. And when the two targets were from between

the peaks and from outside the distribution, the outside targets tended to be found

before the between-peak target. This was clear evidence that the bimodality of the

distribution was represented, that both of its peaks were simultaneously repre-

sented, and the smaller probability of a distractor coming from the trough between

the two peaks was represented, as well. This showed that the representation was

this detailed at this particular moment in time and that the representations did not

simply reflect performance aggregated over time. The distribution – in the

moment – represented the actual probability values.

Chetverikov et al. (2020) also simulated predictions for the search performance

of the models assuming bimodal, single-template, and averaged representations.

The simulation where bimodal representations were assumed, was by far the best

at predicting the observed performance both in terms of response times and the

order in which the targets were reported. Importantly by using double-target

search Chetverikov et al. were able to demonstrate that the results of previous

experiments where observers learned the distribution on average, cannot be

explained by a combination of different decision rules applied on different test

trials, but that the representation is bimodal at a given moment in time.

3.2.9 Does Feature Distribution Learning Impact Search Performance Only,
or Perception More Generally?

The learning effects demonstrated with the feature distribution learning method

would have limited importance for understanding perception in a more general
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sense, if the only benefit of the learning was to find targets in visual search tasks.

It is therefore important to test whether the feature distribution learning influ-

ences perception in a more general sense.

This question has been addressed with the use of a well-documented temporal

bias in perception called serial dependence (Fischer &Whitney, 2014; see Pascucci

et al., 2023 for review). Rafiei et al. (2021a, 2021b) tested the effects of feature

distribution learning upon serial dependence biases in the perception of orientation.

Their results show how probabilistic information about feature distributions of

distractors from previous trials affects orientation estimates. Rafiei et al. (2021a)

tested judgments of the orientation of single oriented lines following FDL-like

learning trials where their observers searched for an oddly oriented line among

distractors on a number of adjacent trials – a fairly standard FDL task – and were

then occasionally asked to report the orientation of the last visual search target.

Rafiei et al. found that there were two opposite biases from the search stimuli that

nevertheless operated simultaneously: there was an attractive bias from the recent

targets of the search (similar to attractive biases in serial dependence studies,

Fischer & Whitney, 2014; Pascucci et al., 2023) while the distractors caused

a repulsive bias. This was an important demonstration as it showed how perception

per se is biased by the learning processes that the FDL methods uncover (rather

than simply search performance). Consistently, Chapman et al. (2023) have

recently demonstrated how the similarity of targets and distractors can rapidly

affect attentional tuning (see also Geng et al., 2017; Witkowski & Geng, 2019).

It is very important in this context to note that Rafiei et al. (2021b) then

demonstrated that these biases did not solely apply to visual search items, but

also to oriented lines that appeared after the search was performed and therefore

played no role in the search task, showing how these biases from preceding

variability influence perception in a general sense, not simply the search tasks.

But while these results of Rafiei et al. are promising, there is a lot of work to be

done in uncovering how the learning of the environmental statistics that FDL

studies reveal operate in perception in a more general sense.

3.2.10 Picking up Variability in the Goal of the Search (the Targets) Instead
of Distractors

The research that has been presented up until now, where the FDL method has

been used, has clearly shown how the variability in to-be-ignored items during

a selective attentional task (the distractors) is picked up and influences percep-

tion. But what about the focus of attention in these visual search tasks, or the

target itself, in other words? Can observers pick up the statistics about the

distributions that the target is drawn from?
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Note that this is a more difficult concept to test as it is hard to expose

observers to enough exemplars of targets from a distribution on single-target

trials. Hansmann-Roth et al. (2022) asked this question in a task where obser-

vers had to locate the odd-one-out coloured diamond among two distractor

diamonds and judge whether the target diamond had a notch at the top, bottom,

left, or right (a task introduced by Bravo & Nakayama, 1992). The target on

trials within the same block was either drawn from a Gaussian distribution or

a uniform one. Once observers had been exposed to a large number of search

trials, response times for the target revealed the shape of the underlying target

distributions, just as has been seen before in previous FDL studies, but this

learning required many more search trials to reliably emerge, presumably since

only one exemplar appeared on each trial instead of the ensembles appearing in

other FDL studies. These results of Hansmann-Roth et al. (2022) reveal

a remarkable ability to assemble statistical information over time, in the form

of feature distributions even when at a given moment, very little information is

available about the distribution.

3.2.11 Limitations of the Feature Distribution Learning Method

Despite its advantages, the FDL method also has drawbacks. The use of visual

search as the task for learning and testing representations of variability necessar-

ily implies that observers learn information about both target distributions

(Hansmann-Roth et al., 2022) and distractor distributions (e.g., Chetverikov

et al., 2016). While this does not preclude comparisons between different distri-

bution types, precise quantitative modelling of observers’ behaviour requires

assumptions about target or distractor representations and non-decisional compo-

nents of response times (see Chetverikov & Kristjánsson, 2022 for

a computational model). In other words, only a monotonic relationship between

the internal representation of a distractor probability distribution and response

times can be assessed without further assumptions. When a certain feature value

(e.g., orientation at 45 degrees) matches distractors better, a target that has this

value will lead to slower search. But it is impossible to say what is the expected

probability of distractors at this value without additional assumptions. Thismakes

quantitative estimates of distractor variability relative. That is, the FDL method

can be used to determine if one condition results in a representation with more

variability than another, but can only be used to determine exactly how large the

represented variability is, if further assumptions are made.

The FDL method also requires relatively good search performance. Certain

populations, such as small children, for example, might have difficulties with

the task that are unrelated to the way they represent variability. For example, van
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de Cruys et al. (2021) had to simplify the task when they used FDL to study how

probability distributions are learned and encoded by children. And even in this

simplified version of the task, response times were considerably higher than in

the previous studies using adult participants. This poses challenges for future

research with such populations as longer search times might imply that the

processing of stimuli is serial and therefore relies less on previous knowledge,

making inferences about internal representations more difficult, among other

things because of decisional influences. The FDL method could also have

potential applications to research into the neural representations of visual

information. This could, for example, be important in studies of patient popula-

tions. It could, as an example, be of large interest to study the performance of

individuals with hemispatial neglect or blindsight on FDL-type tasks. But more

efficient ways of assessing FDL would probably be needed for such

applications.

Furthermore, despite revealing rapid learning in terms of the duration of

individual learning blocks, the total number of trials needed to show differenti-

ation of similar distribution shapes (uniform vs. Gaussian) is still considerable

(usually 1000 trials, or more are required). Of course, other distribution param-

eters, such as means or variance, can be estimated more quickly.

3.2.12 Summary of the FDL Method

Overall, we are beginning to understand how the visual system uses the

statistical information in recent visual input to guide behaviour. The feature

distribution learning method has enabled us to uncover representations of

heterogeneous stimuli in surprising detail, and has yielded results that differ

markedly from traditional explicit methods (as shown by Hansmann-Roth et al.,

2021 and discussed in Section 3.3). Most importantly, FDL studies show that

observers can learn the shape of orientation and colour distributions within

arrays containing multiple stimuli with various feature values (Chetverikov

et al., 2017c). Observers integrate information over several trials to build

probabilistic representations of feature distributions with complex shapes:

Gaussian or uniform, skewed to the left or right, and even bimodal distributions

(Chetverikov et al., 2017b, 2020). Since this method was introduced, a lot of

findings have emerged that support this general notion (Chetverikov et al.,

2020; Chetverikov & Kristjánsson, 2022; Hansmann-Roth et al., 2021, 2022;

Pascucci et al., 2022; Rafiei et al., 2021a, 2021b; Tanrıkulu et al., 2020, 2021b).
Importantly, in a key demonstration, Chetverikov and Kristjánsson (2022, see

discussion in Section 3.2.7) showed that the uncovered representations can

serve as building blocks for higher-level vision as revealed by their integration
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with the spatial distributions of stimuli and distributions of other features. Rafiei

et al. (2021a, b) then showed how these representations can affect perceptual

decisions directly.

The findings from FDL methods are not only interesting in how they demon-

strate what can be picked up regarding the detail in the environment. They also

have notable implications with regard to the broader picture of how visual

perception operates that will be discussed in the following sections.

3.2.13 Other Implicit Tests of Representations of Visual Variability

While FDL is currently the most developed implicit approach for uncovering

how visual variability is represented, it is certainly not the only approach. First,

it is possible to infer how variability in the stimuli is represented by looking at

performance in a forced-choice member identification task as a function of the

feature distributions that the stimuli belong to. The basic idea is similar to the

FDL method but there are some notable differences. Observers are shown a set

of stimuli and asked to remember them, while later, two items are presented and

the observers are required to report which one of the two was present. Thus,

unlike in FDL, the observers here are explicitly instructed to remember the

stimulus set even though they are not explicitly tested on their knowledge of the

properties of the set. The idea is that these properties are nevertheless encoded

and will affect whether items are identified as members of the memory set. For

example, if observers represent stimuli by keeping track of their mean and

range, then they should identify items within that range as having been pre-

sented even if they were actually not presented (a false alarm, in a sense). Such

results have been found in several papers (Khayat & Hochstein, 2018, 2019;

Sama et al., 2021). For example, in Khayat & Hochstein (2018), twelve circles

were serially presented, each for 100 ms followed by a membership test. What

participants did not knowwas that on some membership tests, one of the stimuli

equalled the mean of the set, and or a non-member of the set, outside the

distribution range. Participants tended to choose circles close to the mean

while tending to reject stimuli outside of the range.

However, it is not clear whether it is the range specifically, some other

measure of variability (e.g., variance), or the full probability distribution that

observers represented in these studies. In partial support of the latter possibility,

Sama and colleagues (2021) also found that when a skewed distribution was

used instead of the previously tested symmetrical distributions, observers were

less likely to identify the members of a long tail of the distribution as previously

seen. This is in line with the earlier evidence for representations of distribution

shape from FDL studies (Chetverikov et al., 2016, 2017c).
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Acerbi and colleagues (2012) used a very different approach to determine what

observers can learn about the variability in a stimulus set in a duration estimation

task. Observers were shown visual flashes where their duration was randomly

sampled from a given probability distribution (e.g., uniform, peaked, and bimodal

duration distributions). Their task was to reproduce the duration of the flashes by

pressing and holding a mouse button for a time period equal to the flash duration.

In the training part, which continued until the observers’ performance had

plateaued (500–1500 trials per observer in each condition in each experiment),

the observers implicitly learned the parameters of the variability of the stimuli.

The responses in the test part (1000 trials) were then used to recover how this

variability is represented. This is possible because the computational model of the

duration estimation would predict different response patterns depending on the

nature of the internal representations of variability in the stimuli. Acerbi et al.

found that the recovered representations (‘priors’) were consistent with the actual

distributions of stimulus features up to the third statistical moment (mean,

variance, skewness). However, in contrast with FDL results, there was no evi-

dence that observers could learn further aspects of the distribution shape, as

bimodal distributions did not lead to bimodal representations.

3.3 Implicit versus Explicit Encoding of Variability

Having discussed different methodologies testing the nature of variability

representations, it is important to consider whether implicit and explicit tests

of how observers represent variability test the same aspect of how variability is

represented. It is quite possible that explicit tasks prompt observers to use some

specific easy-to-access heuristics, like remembering the items most different

from the rest, while implicit tasks rely more on the overall impression of the set

of stimuli and therefore include more information about the true nature of the

underlying distribution. The task requirements for the two may differ, requiring

different information. And this also raises the question of whether different

neural mechanisms may be responsible for performing the two tasks. On the

other hand, it is also possible that regardless of the type of task, the same

information is used. To answer this question, we will consider whether implicit

and explicit tests have access to the same amount of information and whether

they can both be used for more complex features as well as for more complex

statistics of the stimulus probability distributions.

3.3.1 Amount of Information Required

Morgan et al. (2008) varied the amount of external noise in an orientation

variance discrimination task to determine how participants perform compared
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to an ideal observer. In particular, they modelled the performance (measured in

just noticeable differences, JNDs) of an observer that they assumed would use

a certain number of randomly selected items out of the whole set of 121 Gabor

elements for representing the whole sample. They estimated that participants

performed similarly to an ideal observer that sampled only three to ten elements.

This does not mean that observers actually sample some of the stimuli: this is

just a way to quantify how much information is used. They might use other

strategies than random sampling or use different estimates of distributions (e.g.,

range instead of variance). Similar estimates of effective sample size 6–8 were

obtained by Solomon (2010) with a stimulus set of eight Gabor patches.

Whitney and Yamanashi Leib (2018) have then proposed the
ffiffiffiffi

N
p

law where

observers behave as if
ffiffiffiffi

N
p

stimuli from the ensemble are sampled (where N is

the number of stimuli in an ensemble). While these accounts certainly do not

necessarily mean that observers engage in sampling, their behaviour is never-

theless consistent with the sampling of just a few elements, perhaps weighted by

their salience as Kanaya et al. (2018) observed (see also Iakovlev & Utochkin,

2021). In other words, observers perform well in explicit tests even with just

a few items present and their performance improves very slowly when the

number of items is increased (see Corbett et al., 2023, for a recent discussion

of sampling in ensemble perception). This suggests that a large amount of

information is lost in explicit variance discrimination tasks.

How much information is used in the case of implicit tests? While we do not

have decisive answers to this question yet, the number would seem to have to be

high to catch the shape of the distributions. To address this, Chetverikov et al.

(2017d) tested learning of distributions of oriented lines varying the set size of

the ensembles on learning trials. Chetverikov et al. (2017d) found that large set

sizes (thirty-six lines in an orientation singleton task) were necessary for robust

feature distribution learning. When the set size was 24, learning was far less

strong, and distribution shape was not learned, and the learning was even less

evident with set sizes of 14 and 8. Note that the sparseness of the displays for the

lower set sizes was not the reason for this, as with dense displays where set-size

was varied but interitem distance was equated, a similar effect of set size was

observed. The set size findings seem to indicate that observers pick up the

distribution properties by aggregating information over the whole display and,

unlike explicit judgments, this learning requires large amounts of sensory data.

This is supported by the fact that the learning improves gradually with increased

numbers of learning trials (the representations are, for example, most accurate

following up to eleven learning trials for a bimodal distribution; Chetverikov

et al., 2017b). Again, this shows that the FDL findings are inconsistent with the

proposed subsampling strategy. It is therefore likely to be fundamentally
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different from what is measured with explicit tests in the literature on summary

statistics that seems consistent with subsampling or generally, that the available

information is underutilized.

3.3.2 Access to More Complex Features

Most studies of variability perception have focused on low-level features, such

as colour, orientation, or brightness. For more complex features, the ability to

assess the mean is well established (see Corbett et al., 2023; Whitney &

Yamanashi Leib, 2018 for reviews) but there is only limited evidence that the

variability of more complex features can be represented as well. In particular,

Haberman and colleagues (2015b) tested whether observers can estimate het-

erogeneity in facial expressions by using adjustment and forced-choice discrim-

ination tasks. They found that performance was much better than chance level

indicating that variability in facial expressions is encoded by observers.

Importantly, the errors were smaller with upright faces compared to faces

shown upside down. This suggests that it was indeed the variability in facial

expression that was encoded and not some other lower-level feature. Mijalli

et al. (2023; see also Daniels et al., 2017) also found that judgements of ethno-

racial diversity reflect the diversity in the presented stimuli and furthermore that

these judgements depend on the gender diversity in stimuli. Such ‘spillover’

effects were also observed by Mijalli and colleagues for combinations of high-

level (ethnoracial) and low-level (colour) variation: when faces are presented on

a background of coloured circles, ethnoracial diversity is rated higher when

circles are more variable (see also the discussion of adaptation effects in

Section 3.3.1). This suggests that there might be common mechanisms behind

high-level and low-level variability estimates, but further studies are necessary

to see if these effects can be replicated when controlling for demand character-

istics and other potential confounds.

Hansmann-Roth et al. (2023) tested feature distribution learning of distribu-

tions based on stimulus shape, in particular a linearized circular shape space

developed by Li et al. (2020). Hansmann-Roth et al. found that learning of the

shape of distributions (either a uniform or a Gaussian distribution) did not occur

for this shape space. However, observers were able to learn the mean and

variance of the distributions as in the cases of explicit estimation or discrimin-

ation of such summary statistics found in other studies (Corbett et al., 2023;

Whitney & Yamanashi Leib, 2018). This may indicate that precise feature

distribution learning is limited to relatively simple features, since the processing

of shape may require more sophisticated neural mechanisms than for processing

colour or orientation. The object recognition literature indicates that shapes are
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assembled from different parts, parts that differ in salience which may involve

relatively complicated integration of basic properties (Biederman, 1987;

Hoffman & Richards, 1984; Marr et al., 1978). This is also broadly consistent

with the lack of simultaneous learning of colour and shape observed by

Hansmann-Roth et al. (2019).

3.3.3 Access to Information about More Complex Distribution Parameters

Is it possible that both explicit and implicit tests can be used to access more

complex parameters of feature distributions? As we highlighted in Section 3.2,

in implicit studies using the FDLmethod, the observers are sensitive to different

distribution parameters, such as mean and variance, but more importantly also

skew and the overall shape of the feature distributions (Chetverikov et al., 2016,

2017b, 2020). On the explicit side, studies of the perception of ensembles have

over the years tended to focus on simple summary statistics – in particular on

questions such as what the mean or the variance of a particular ensemble is. The

studies have typically involved displaying an ensemble and explicitly asking for

judgments about the mean or variance of the ensemble – yielding findings

showing that observers can indeed make such estimates. Notably, there is no

evidence that observers can estimate the shape of distributions in forced-choice

tasks (e.g., skew, kurtosis, or whether they have more than one mode). When

such questions have been explicitly addressed with the methods typically used

in the ensemble literature, no sensitivity to higher-order statistics (higher than

the second moment, e.g., skewness or kurtosis) has been found (Atchley &

Andersen, 1995; Dakin, 2001; Dakin & Watt, 1997; Hansmann-Roth et al.,

2021; Tran et al., 2017). The explicit reproduction tasks seem to be an exception

where observers seem to be able to reproduce some higher-order aspects of

distribution (e.g., skew or bimodality) in extreme cases. Importantly, feature

distribution learning methods have on the other hand revealed that observers

can learn far more detail of variability within visual environments than the

studies using explicit tasks indicate.

Note that this difference in sensitivity to more complex distribution param-

eters between implicit and explicit methods cannot be attributed to differences

in the amount of information available to participants. Hansmann-Roth et al.

(2021; see Section 3.3.4 for a more detailed discussion) implemented the

explicit and implicit tests within the same overall design following previous

FDL studies (multiple learning trials followed by a test). However, no evidence

of sensitivity to distribution shape was found for explicit judgments. In contrast,

Chetverikov et al. (2017b) found that already one to two learning trials are

enough to learn simpler distribution shapes, although more other (bimodal)
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distributions might take more time. Both studies argue against the idea that the

amount of information in the stimuli is a crucial factor when contrasting implicit

and explicit tasks (as opposed to the amount of information used by participants,

Section 3.3.1).

3.3.4 Do Summary Statistics Judgments and Feature Distribution Learning
Share Common Mechanisms?

Are there common mechanisms responsible for performance on explicit and

implicit tests of variability perception? In other words, are the two mechanisms

related at all? An important result was reported by Hansmann-Roth et al. (2021)

where this was tested directly. Explicit reports of the mean, variance and shape

of distributions were compared against the implicit FDL measures. As

explained in Section 3.2, the FDL measures are implicit since they rely on role-

reversal effects and in essence observers do not have any idea of whether they

are being probed with regard to mean, variance or shape. Hansmann-Roth et al.

contrasted explicit (probing with forced-choice discrimination) and implicit

methods (role reversals on test trials, as in FDL methods) in a colour search

task similar to the one used by Chetverikov et al. (2017c). Hansmann-Roth et al.

found that observers could readily distinguish distractor sets from previous

learning trials with different mean and variance using the explicit discrimin-

ation method, but importantly, they cannot do this for distribution shape. In this

regard, Hansmann-Roth et al. (2021) replicated earlier findings using explicit

tests discussed in the previous section but now in the conditions typical for FDL

studies where observers have information from multiple learning trials with

large number of stimuli preceding the test. For the implicit FDL method, on the

other hand, there was strong evidence for learning of all three aspects (mean,

variance, and shape of the underlying distributions) in the response time curves.

Importantly, Hansmann-Roth et al. (2021) also assessed the relationship

between performance on different tasks. They used an ideal observer model to

infer the amount of noise (inverse of the slope of the psychometric curve)

affecting the internal representation of mean and variance and the variance of

the internal representation (the width of the response time curve) in the implicit

task. Importantly, all three estimates depended on the internal noise in the visual

system. Hansmann-Roth et al. (2021) reasoned that if the explicit and implicit

tasks have common mechanisms then there should be shared sources of noise

and the estimates of noise in the explicit tasks and variance in the implicit task

should be correlated. Indeed, they found a strong correlation across observers

for the noise estimates in explicit mean and variance estimation tasks. However,

the variance estimate of the implicit FDL task was not correlated with the other
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two. This was a crucial result since it suggested that the overlap in noise sources

is at best, very small, arguing that different mechanisms are involved in explicit

and implicit assessments of the characteristics of stimulus ensembles. While

this lack of correlation by itself is not enough to make any strong conclusions, in

combination with a notable lack of results showing the ability to discriminate

complex properties (Section 3.3.3) and the differences related to the amount of

information utilized in explicit and implicit tests (Section 3.3.1), this suggests

a dissociation of mechanisms of implicit and explicit tests.

3.3.5 What Limits Explicit Assessment of Variability?

The literature on ensemble perception has suggested that far less information is

represented than is available in the environment. While this is likely to be true in

a general sense, many findings in the ensemble perception and summary statis-

tic literature are at odds with the findings that studies using the FDL method

have revealed. Far more information about the statistics of the environment

seems to be available for performance than summary statistics studies seem to

indicate. It is notable that summary statistics studies typically rely on explicit

reports to assess distributions, including shape. But we think it is important to

highlight that such estimation is not a task that the visual system typically has to

perform. The primary purpose of vision is not to count statistical properties, or

to explicitly estimate statistical properties, but instead the goal is successful

interaction with the world, a point emphasized strongly in James Gibson’s

ecological approach to perception (Gibson, 1950, 1962) recently re-

emphasized by Kristjánsson & Draschkow (2021). In this light, it makes

sense that even though the information about distribution shape is not available

for explicit reporting, it is available for interactions with the world.

The results of Hansmann-Roth et al. (2021) and other studies discussed in

Sections 3.1 and 3.3.3 suggest that when observers are explicitly asked about

representations, they cannot report the detail that they can nevertheless act on

(using it to speed their search in the case of FDL). Their performance at

reporting distribution shape seems to reflect that when the information has to

be explicitly reported, it is not available for that. On the other hand, when the

information is to be used for successful interactions with the world, it is clearly

available. What this means is that detailed representations are implicit and

cannot easily be accessed with explicit reports. The explicit reproduction

tasks may force observers into lower-dimensional spaces of possibilities than

those that we use for interactions with the world. This could reflect that the

discrimination task is not a natural one for the visual system while the search in

FDL tasks better resembles what natural vision is used for. Hansmann-Roth
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et al. speculated that this dissociation was potentially related to widely known

different pathways for perception and action (Goodale &Milner, 1992;Mishkin

& Ungerleider, 1982), in the extrastriate ventral and dorsal visual streams,

respectively.

Note however that there is evidence from studies of the averaging of ensem-

bles of orientated triangles, that ensemble averaging is influenced by skew.

Iakovlev and Utochkin (2023) found that the estimates of averages were

systematically skewed towards the mode (away from the mean) a bias that

increased as the distance between the mean and the mode became larger.

Similarly, Kim and Chong (2020) found that congruency in skew or variance

between the presented and the test stimuli makes mean estimation more precise.

They asked observers to explicitly reproduce the mean of a set of circles, but

notably, observers reproduced the means on another set of circles (rather than

the more typical single test item for estimation). They varied the set size,

variance, and skewness between the example set and probe set. They found

that keeping these properties constant improved performance on the mean

estimation task. The shape of the distribution therefore influenced the explicit

judgement, but it seemingly did so implicitly, because the distribution shape

was not to be reported (which could have been a useful comparison). The results

of Im et al. (2020) where observers explicitly judged category boundaries

(whether circular objects belonged to the ‘large’ set or the ‘small’ one) show

how distribution statistics, including distribution shape, play a role in the

judgments (it is not discounted, or ignored in the estimates). These findings

indicate that encoding of distribution parameters also occurs with the designs

typically used in studies with explicit tests, but it is difficult for observers to

access these parameters in an explicit way, consistent with what Hansmann-

Roth et al. (2021) observed.

It seems somewhat paradoxical that skew, for example, influences explicit

mean estimates but not explicit skew estimates, or that the shape of the feature

distribution is reflected in response times in FDL studies but not in observers’

performance in a 2AFC task testing shape discrimination. Why do the explicit

tests not reveal the knowledge about distributions that is available? As argued in

the opening paragraph of this section, the artificial nature of forced-choice

discrimination tests may be the reason, although mean and variance discrimin-

ation are perhaps no less artificial than skew discrimination. Alternatively,

particular strategies that observers use in explicit tasks might preclude the use

of knowledge about more complex distribution parameters. For example, using

range is a viable heuristic for variance discrimination but is useless for skew

discrimination. Anecdotally, experimenters using the FDL paradigm have

found that they can discriminate uniform and Gaussian stimuli by focusing on
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the uniformity of the distribution (i.e., the lack of a pronounced mode) as a cue.

But this is because they are aware that there are two specific distributions and

know how they differ from each other. Observers who do not have this know-

ledge might invent other less useful heuristics during their performance.

Interestingly, in explicit reproduction tasks observers can point out some

properties of the feature distribution, such as skew or bimodality (Oriet &

Hozempa, 2016; Tran et al., 2017). However, this happens only in the case of

extreme examples and also with high degree of imprecision.We believe that this

also demonstrates the limits of explicit judgments, because it stands to reason

that if, for example, there are just two orientations shown over and over,

observers will learn that the distribution is ‘bimodal’. The fact that such extreme

examples are needed to demonstrate the ability to explicitly reproduce the

distribution suggests that observers engage with the distribution in a different

way than in the case of implicit tests.

In this context, it is interesting to read more than twenty-year old arguments

from the change blindness literature where similar points are made (with

reference to ‘grand illusion’ arguments of the paucity of visual representations,

Cohen et al., 2016; O’Regan, 1992). Thornton & Fernandez-Duque (2000,

p. 25) argued, ‘Studies of change blindness are considered to be important

evidence in support of perception as a “Grand Illusion.” However, these studies

of change blindness, as with earlier studies that invoke the Grand Illusion,

typically require observers to make explicit reports. Thus, while they may

provide direct evidence about perceptual awareness, such findings are less

informative about perceptual representation’.

We believe that the findings that we have reviewed here make it obvious that

the learning is implicit and is therefore presumably mediated by mechanisms

that do not make a direct contribution to consciousness. It may be informative to

look at other phenomena of how non-conscious processing influences visual

performance. Examples can be found in neuropsychology, in phenomena like

blindsight, where people can perform various visuomotor tasks despite damage

to the primary visual cortex (Danckert & Goodale, 2000). Another example is

priming effects from stimuli that are missed in neglect (Kristjánsson et al., 2005;

Saevarsson et al., 2008). Studies of such patient populations along with neuro-

imaging or electrophysiology might provide information about neural loci of

FDL and about which regions are necessary for such learning to emerge.

In sum, explicit and implicit tests of variability seem to reflect different

aspects of visual perception. During explicit tests, observers seem to be able

to utilize less information about the stimuli and do not have access to the same

level of complexity about the parameters of feature distributions and may rely

more on heuristics and therefore miss details in their task performance.
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3.4 Current Progress in the Understanding of Representations
of Variability

So, how is variability in the visual input represented? We have highlighted the

results obtained with different methodologies from forced-choice tests to implicit

feature distribution learning. Overall, it seems that the method used for testing

variability representations strongly influences the estimates of what is repre-

sented. More implicit methods show a higher degree of detail in representations,

including the representation of the shape of the feature distribution, while more

explicit methods seem limited to their variance or range. As we have argued in

a previous section, this might reflect reliance on heuristics in explicit judgements.

Knowledge of the finer details of variability representations has now been

confirmed in many studies with different methods suggesting that future studies

using explicit tests should be interpreted with an emphasis on what observers do

in these tests rather than what they represent (see also Kay et al., 2023).

We have not touched upon the issue of neural representation of variability.

This is partly because there have not been many studies on this issue, which can,

in turn, be explained by the fact that we can expect that the variability in the

stimuli will be naturally represented in neural responses. This is illustrated by

a recent population coding model by Utochkin et al. (2023) that shows how

read-out from a population of neurons pooling over multiple stimuli in a set can

be used for various tasks that we have discussed (e.g., 2AFC variability

discrimination or feature distribution learning). In other words, the representa-

tion of variability is present in the neural population responses and can be either

read out in an explicit fashion or used implicitly in neural computations (see

alsoWalker et al., 2023). For example, changes in motion coherence (variability

in the direction of moving dots) correspond to differential responses of neural

populations in classic visual areas, similarly to internal fluctuations in sensory

uncertainty (e.g., Braddick et al., 2001; Chetverikov & Jehee, 2023; Hebart

et al., 2012; McKeefry et al., 1997; Rees et al., 2000). On the other hand,

Witkowski & Geng (2023) recently studied how a target varying across trials in

a visual search task is encoded in the brain with fMRI and suggested that the

mean and variability of target features could be encoded independently. They

were able to decode the mean target colour using the multivariate pattern

analysis (a linear classifier) in prefrontal cortex (dorsolateral prefrontal cortex

and inferior frontal junction) as well as occipital cortex (V1–V3) while vari-

ability was reflected in the overall BOLD signal strength in the same regions of

prefrontal cortex. However, the overall BOLD strength might reflect other

factors confounded with variability (attentional engagement, task difficulty)

making the unequivocal interpretation of the findings difficult.
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Interestingly, information about variability accumulated at different time-

scales might be represented in the brain in different ways. Vilares et al. (2012)

used a variant of a centroid estimation task where participants had to guess the

location of a hidden target based on several points spread around it. They varied

both the variability of the points on individual trials (‘likelihood’) and the

variability of the hidden locations across trials (‘prior’). They found that

while the changes in ‘likelihood’ were correlated with changes in the fMRI

BOLD signal in the visual cortex, changes in the ‘prior’ were correlated with

activity in other regions (putamen, amygdala, orbitofrontal cortex, and the

insula). However, such evidence can be difficult to interpret because of add-

itional factors that may affect performance, such as task difficulty and attention

fluctuations, that could explain the correlations. Future studies using

approaches that reconstruct probabilistic representation in the cortex in

a more direct fashion (e.g., van Bergen & Jehee, 2021; Walker et al., 2023)

might shed more light on the question of neural representation of variability.

4 Discussion

4.1 Rich or Sparse Experience, Overflow and the Grand Illusion

Understanding the perception of variability is important as this can aid the

resolution of a long-standing debate, sometimes called the question of overflow

(e.g., Block, 2011). The overflow view is that perceptual consciousness is richer

than the information that can be cognitively accessed reflects. In contrast, others

have argued that observers can only represent the very limited amount of

information that observers can report and consciously attend to (Noe, 2002;

O’Regan, 1992; O’Regan & Noë, 2001). This is, in essence, the claim that the

detail that we think we perceive in the environment is actually a ‘grand illusion’

(O’Regan, 1992). More recently, Cohen et al. (2016) proposed a related pos-

ition, that can be considered an attempt at a compromise, suggesting that

observers only represent coarse statistical summaries outside of the focus of

attention. However, this approach seems to underestimate the level of detail that

the visual system can represent, as we have argued in Section 3.3 and then

elaborate on in this section.

4.1.1 Evidence for the ‘Grand Illusion’ and Overflow Views

There is therefore something of a paradox here. On the one hand, there are

powerful demonstrations of inattentional blindness where we can miss large

changes to visual scenes or miss highly pertinent information in our visual field,

a gorilla can walk unnoticed across a screen that we are watching if we are
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engaged in another task (Mack & Rock, 1998; Simons & Chabris, 1999).

Change blindness studies then show how we can be surprisingly inept at

noticing large changes, such as an engine missing from a jet, in visual scenes

following interruptions such as from masks (Rensink et al., 1997) or from

mudsplashes (O’Regan et al., 1999). Additionally, there is the literature that

has sometimes been thought to reveal the paucity of our visual representations –

in particular, the literature on ensemble representations that seems to indicate

that we can only represent summaries of the variation in the environment

(Alvarez, 2011; Cohen et al., 2016).

On the other hand, consistent with the argument that more information is

represented than can be reported, there is considerable evidence of detailed

representations of various properties. For example, a key demonstration

comes from Sperling’s (1960) famous investigations of what he called iconic

memory. Sperling found that observers could report only three to four items

within a briefly presented matrix of sixteen letters (in the ‘full report’ condi-

tion). But interestingly, they could also report three to four items from any row

that was cued once the array had disappeared, but only if the cue appeared

within a very limited time period (around 500 ms; in the ‘partial report’

condition). This result has been taken to support the overflow argument as it

shows that what can be accessed with the ‘full report’ is more limited than

what is represented (as shown by the ‘partial report’ results). Furthermore, as

argued by Haun et al. (2017), there are potentially many more aspects of these

displays that can be represented and reported by observers (e.g., the arrange-

ment of letters, the uniformity of spacing between them, their colours, etc.). In

line with this, an interesting finding was reported by Bronfman et al. (2014).

They tested sensitivity to colour diversity in cued and uncued rows in

a Sperling-like briefly presented array. Their observers were able to estimate

colour diversity of non-cued arrays without a cost and they argued from this

that colour diversity is represented automatically, outside the focus attention,

again suggesting that observers perceive more information in the display than

what is reported in the ‘full report’ condition indicates. However, in a later

study, Jackson-Nielsen et al. (2017) showed that if observers do not expect

a colour diversity judgment, a significant part of them (50% to 80%) cannot

correctly determine in a surprise test, how much colour diversity the previous

stimulus had. Furthermore, they found that performance on the letter memory

task decreases when the observers start expecting the colour diversity task,

that is, there are double-task costs. The debate about the interpretation of this

and other related findings is still ongoing (Hawkins et al., 2022; Usher et al.,

2018) but it seems that at least some minimal level of attention might be

needed to process information on colour diversity.
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Interestingly, the key claims that have been made from change blindness and

inattentional blindness findings have then also been questioned by studies demon-

strating that even though observers might not report the supposedly ‘missed’ target,

they still seem to register it to some extent. A nice example is howMoore and Egeth

(1997) followed up on inattentional blindness findings reported by Mack and

colleagues (1992). In the original study, Mack et al. had presented a difficult

perceptual task on an array of task-irrelevant black and white dots finding that

observers did not notice salient patterns in the dots when their attention was

otherwise engaged, drawing the conclusion that these items were not represented.

But importantly, Moore and Egeth found that even if the patterns could not be

explicitly reported this does not necessarily mean that they were not perceived. In

a clever manipulation Moore and Egeth found even if the patterns were unnoticed,

they still strongly influenced judgments of line length (as in, e.g., the Muller-Lyer

and Ponzo illusions). This must be considered strong evidence for overflow argu-

ments since the inaccessible information nevertheless influenced performance.

In a similar vein, Fernandez-Duque and Thornton (2000, 2003; see Mitroff &

Simons, 2002 for an alternative view) showed how observers seem to be

implicitly aware of changes that they do not notice. They found that when

observers had not noticed a change in an array of rectangles, they were

nevertheless better than chance at locating the changed item. Observers seemed

to be able to detect the locus of the change even if they did not notice the change.

Sun et al. (2018) recently also showed that change detection performance

underestimates the richness of the representation. They presented brief arrays

of multicoloured dots asking observers to report the centroid colour of a subset

of relatively homogenous dots. They found evidence for high-capacity repre-

sentation in the centroid judgement data, while change detection performance

on similar arrays resulted in capacity estimates of only around two items. These

results show that even when observers fail to report some parts of the scene, they

might still represent considerable portions of the scene, and far more of the

information than the failures to explicitly report this information seem to

indicate. According to the overflow account, perceptual representations are

richer than what can be consciously accessed indicates. The findings from

change blindness and inattentional blindness might be taken to challenge the

overflow idea. But the fact that changes that go unreported can nevertheless

influence perception is exactly what the overflow account would predict.

4.1.2 Can Summary Statistics Resolve the Paradox?

In an attempt at resolving this controversy, Cohen et al. (2016) suggested that

perhaps the rich impressions of consciousness can be explained by the reliance
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on summary statistics, arguing that ‘a handful of items are perceived with high

fidelity, while the remainder of the world is represented as an ensemble statistic’

(2016, p. 332). This matches the common claim from within the ensemble

learning literature that observers represent means and variance of ensembles

because of the severe constraints that are assumed to apply to both attentional

and cognitive capacity. As explained in Section 2.3, it is indeed well docu-

mented that human observers can extract summary statistical information of

specific visual dimensions (such as the average colour of a group of items) and

these summaries have been shown to work for a number of different feature

dimensions such as size, orientation and spatial position, and then also for

higher-level properties, such as faces, emotion, or biological motion (see, e.g.,

Corbett et al., 2023, for review). In a recent meta-analysis, Whitney &

Yamanashi Leib (2018) estimated the number of sampled items from an ensem-

ble to be the square root of the elements in the image (see also Section 3.3.1).

A rich detailed representation of a few items and a coarse summary representa-

tion of the rest is a compromise between the two stances described in

Section 4.1.1 since these summary representations are less detailed than what

is attended (‘grand illusion’) but they are still present (‘overflow’). Cohen et al.

(2016) concluded by claiming that ‘ensemble statistics appear to capture the

entirety of perceptual experience (p. 324)’. While we do not necessarily dis-

agree with this claim, the key question becomes what the term ensemble

statistics encompasses and on this we disagree with Cohen et al., since these

representations seem to include far more information than Cohen et al. claim

and is in fact typically assumed in standard summary statistics accounts.

On the surface, the central claims of the ensemble literature make sense.

A sensible goal for the visual system is to represent enough information but not

too much because the capacity to represent the information is quite limited as

classic findings show. These arguments have been used in claims about how the

world is represented and the bottom line in these proposals is that the represen-

tations are sparse. As explained in Section 4.1.1, many authors (e.g., Cohen

et al., 2016; Lau & Rosenthal, 2011; O’Regan, 1992) have argued that the

sparseness of these representations can explain phenomena of inattention that

show how observers canmiss surprising detail in the visual environment such as

change blindness (Rensink et al., 1997) and inattentional blindness (Mack et al.,

1992;Most et al., 2001). The claim is that this information is not just missed, but

is never represented in the first place, and only a small number of items are

processed in detail by the visual system. But are our representations really this

sparse? There is indeed plenty of evidence of considerable processing of this

information that is considered to be so sparsely represented (Bronfman et al.,

2014; Fernandez-Duque & Thornton, 2003; Moore & Egeth, 1997). We can
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then add to this the evidence of surprisingly detailed processing of unattended

information from the feature distribution learning method that we covered in

detail in Section 3.2 (Chetverikov et al., 2016; Chetverikov & Kristjánsson,

2022). Those findings are also problematic for accounts such as Cohen et al.

(2016) who argue for a weaker version of the grand illusion view that involves

that the limited capacity is overcome with summary statistics.

Haun et al. (2017) also took issue with the sparse summary statistics view

highlighting that rich detailed visual experience is supported by good evidence

from introspective reports and phenomenology (mentioning, among other

things, some of the findings discussed in this and the previous sections). They

claimed that the methods typically used in ensemble perception studies might

lead to misleading results, that sparseness arguments rely too strongly on

forced-choice binary responses, and that richer experimental paradigms are

needed that go beyond these reductionistic approaches. We suggest here that

studies that use the FDL methodology meet this challenge, for the most part.

Haun et al. (2017) also claimed that good psychophysical evidence for rich

representations is often unjustly discounted (one common criticism is that they

are too introspective, e.g.). One good example that they mention is how colour

vision in the periphery is generally underestimated and discounted. For

example, Tyler (2015) showed, counter to what is almost ‘common knowledge’

in the field, that there is considerable colour vision in the periphery when the

cortical magnification factor is accounted for. Consistently, Webster and col-

leagues (2010) measured the change in colour appearance between the visual

periphery and the central foveal region. They found that the differences in

perceived colour between the fovea and the periphery are much smaller than

spectral sensitivity at these locations would predict. Also, Wallis et al. (2016)

found surprisingly high sensitivity to deviations from natural appearance

(through Gaussian blur or texture synthesis) in the periphery (at 10° from the

fovea). It is also important to note that this surprisingly good ability at spotting

degradations of images, was however only seen for relatively large patches

(5.95°) from the images, that provided context about the scenes, but not for

small patches (0.74°) that provided little context. Tanrikulu et al. (2020) also

found that observers were able to encode some properties of distractor distribu-

tions in peripheral vision using the feature distribution learning method. All this

shows that peripheral vision may not be as poor or sparse as has often been

assumed (see, e.g., Kaunitz et al., 2016).

With respect to ensemble properties, it is also important to keep in mind how

the capacity of ensemble perception is assessed. In ensemble statistics studies

observers are typically asked to make an explicit report on the ensemble in the

form of a 2AFC or a reproduction task. But that is not a task that the visual system
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generally has to perform. As we have shown in Section 3.2, when ensemble

representations are measured with more implicit methods, the results typically

show more detailed representations. For example, the quickly expanding feature

distribution learning literature shows that the shape of the feature distribution is

represented by observers over and above simple statistics, such as means and

variances (Chetverikov et al., 2016, 2019; Chetverikov & Kristjánsson, 2022).

Crucially, an explicit comparison of explicit and implicit tests provided by

Hansmann-Roth et al. (2021) shows that observers fail to report complex ensem-

ble properties during explicit tests but importantly, these properties are neverthe-

less reflected in the implicit tests. This suggests that the explicit tests of summary

statistics underestimate the richness of visual representations, supporting the

central claims of the overflow argument and related conceptions.

While coarse statistical summaries cannot account for the results of empirical

studies that have accumulated in the last decade, it might well be that the

representation of variability in the visual world can be described by accounts

that assume that the brain uses more complex sets of image-computable statis-

tics (Balas et al., 2009; Freeman & Simoncelli, 2011; Rosenholtz, 2016, 2020).

Such encoding schemes assume that visual representations can be described by

using thousands of parameters, a large step from the one or two statistics

assumed in ensemble studies. Of course, such complex representations can

explain the results of diverse implicit tests of visual variability perception.

Still, observers can nevertheless distinguish between images with identical

statistical properties (Wallis et al., 2016), which suggests that even such com-

plex models do not fully account for the richness of perceptual experience.

It has been proposed that recurrent processing in brain mechanisms devoted

to sensory processing could underlie this more detailed processing (see, e.g.,

Lamme, 2010), notably in areas that are distinct from, for example, the fronto-

parietal attention networks that handle attentional selection and are severely

capacity limited. While we are sympathetic to such views, we do not believe

that at this point we have the grounds to make strong claims regarding neural

mechanisms of the learning that is revealed in FDL studies, for example.

4.1.2.1 Summary of Our Views of Overflow versus Grand Illusion
Accounts

In the light of all the claims about sparse representations of visual environments

that have been inspired by change blindness and inattentional blindness studies,

along with the summary statistics literature, it almost seems like a miracle that

we can walk around the environment while speaking on the phone (or even on

a video call) and not constantly bump into the things in our environment. Why
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do we not keep stumbling over all kinds of stimuli blocking our path? The

easiest and most straightforward explanation is that this information about these

obstacles is processed and represented in some way, but probably not con-

sciously (if we assume that there is actually a precise definition of conscious

processing). In fact, mechanisms that enable us to avoid obstacles have no need

for being conscious. The proposal of Cohen et al. (2016), for example, is that

summaries are generated of the peripheral information in the visual field. But

summary representations simply do not seem to be up to the job. To take one

particular example, summary representations would not allow us to avoid for

example the concrete poles often placed on the sidewalk to block cars from

entering. The poles should simply be summarized as grey stuff blended with the

similarly coloured asphalt on the sidewalk in a summary statistic. But we

typically do not stumble on such obstacles even when our attention is focused

on something unrelated (although this can sometimes spectacularly fail; but the

fact is that most of the time it does not).

So we claim that far more information is represented than proponents of the

‘grand illusion’ accounts propose, and more than just simple summaries. Cohen

et al. (2016) posited that overflow arguments must be supported by ‘specific

examples of visual input that can be consciously perceived without being

attended, held in working memory, reported or used to guide volitional action’.

Feature distribution learning satisfies at least the last of these criteria. According

to the claims of Cohen et al. (2016), if this is indeed the case, there is then less

reason for scientists to be sceptical of claims that ‘observers can see more than

can be accessed’ as they put it (p. 332). Let us also note the increased use of ‘no-

report’ paradigms (see Tsuchiya et al., 2015, for review). One benefit of such

paradigms is that they avoid the potential confounding effects of explicit

reports. All in all, the studies assessing variability perception suggest that

observers indeed see more than could be (explicitly) assessed.

4.2 Probabilistic Perception

A long-standing discussion in the vision literature is whether the brain can

build probabilistic models of the visual world (Chetverikov & Kristjánsson,

2022; Fiser et al., 2010; Knill & Pouget, 2004; Lange et al., 2023; Pouget et al.,

2000; Rahnev et al., 2021; Rao et al., 2002; Tanrıkulu et al., 2021a; Zemel

et al., 1998). Importantly, the term ‘probabilistic perception’ is often taken to

mean uncertainty in the inferences about the feature value for a single stimu-

lus, such as the orientation of a Gabor patch. However, this is only a small part

of the general taxonomy of probabilistic and non-probabilistic models

(Koblinger et al., 2021).
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Studies of perceptual variability offer a different perspective, instead putting

forward the question ‘is variability represented probabilistically?’. There is

a continuum of possible answers to this question. For example, a summary

statistics representation that includes the mean and variance of stimulus features

can be considered probabilistic since it describes the probability of stimulus

features approximated with a normal distribution. However, an accurate prob-

abilistic representation would necessarily go beyond just means and variances

to represent the distribution of visual features as precisely as possible.

The results from the feature distribution learning literature indicate that

perception is inherently probabilistic. Tanrikulu et al. (2021a) speculated that

‘the crucial aspect of FDL is that the response feature differs from the visual

feature being investigated. Therefore, FDL involves i) no query, ii) no percep-

tual decision about the distractor features that are learned, iii) no imposition of

cognitive categories, iv) no sampling and v) no subjective guessing about the

relevant visual feature’ (p. 4). This indirect connection enables researchers to

sidestep many criticisms that have been used against experiments that have been

aimed at assessing probabilistic representations (Block, 2018; Rahnev, 2017).

Tanrikulu et al. go on to say: ‘. . . the probability distributions revealed by the

FDL method are not imposed onto the task by the experimenter via

a probabilistic description of observer’s responses, because the method does

not require a response concerning the visual feature whose distribution is being

assessed. Instead, these probability distributions originate from the visual

process necessary to perform the search’ (p. 5).

Chetverikov and Kristjánsson (2022) formalized these arguments in

a Bayesian observer model showing how a probabilistic representation of

distractor features in FDL studies is related to response times (Figure 4B). In

brief, they assumed that the observer obtains noisy sensory samples from each

stimulus at each moment in time during the search task. These samples are then

used to compare the probability that a stimulus at a given location is a distractor

against the probability that it is a target. The decision to report the item at

a given location as a target is made when the ratio of the two probabilities (the

decision variable) exceeds a threshold value. The observer is assumed to know

the sensory noise properties and has learned from preceding trials some infor-

mation (not necessarily precise) about the probability distributions of target and

distractor features. This knowledge and the sensory samples are used to com-

pute the decision variable. Crucially, the model demonstrated that there is

a monotonic relationship between the expected probability that a certain feature

value corresponds to a distracting stimulus and the response times on test trial

when the target has that particular feature value (see Chetverikov and

Kristjánsson, 2022, for details). In other words, the higher the probability that
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a certain orientation is a distractor, the slower the search would be when this

feature belongs to a target instead. This formally proves that response times in

FDL can be used to approximately reconstruct distractor representations, once

again demonstrating how observers have detailed probabilistic representations

of distracting stimuli.

Notably, both explicit and implicit tests can be united in a probabilistic

perception framework. For example, Utochkin et al. (2023) implement

a noisy observer model using neural population codes and showed that this

implementation can explain the results for both implicit and explicit tasks.

However, for reasons outlined in Section 3.3 we believe that there is currently

little empirical support for the idea that the same mechanisms subserve

responses in both these types of task. Thus, while they could be explained by

a single probabilistic model, it does not seem to be the case that such an

explanation would be able to account for the diverging patterns of findings

related to explicit and implicit tasks.

4.3 The Nature of Target Templates and Templates for Rejection

In the visual search literature, search performance is often described as reflect-

ing the operation of target and distractor templates, that is, the representations of

these items held in memory (Desimone & Duncan, 1995). Specifically, target

templates serve the purpose of filtering relevant information and/or checking

that the attended stimulus is a target, while filtering of irrelevant information is

thought to be based on distractor templates tuned to specific feature values that

are to be ignored (have been also called ‘templates for rejection’, see Arita et al.,

2012; Woodman et al., 2013, for review). These templates have traditionally

been thought to match exactly the features of targets or distractors, perhaps with

the addition of some noise. However, in the light of what is now known about

the way our visual system represents the variability of stimuli features, it might

be more appropriate to consider them as approximations of feature distributions

of targets and distractors.

Kristjánsson (2022) made the case that the nature of the representations that

we build up internally during exposure to the environment are probabilistic,

citing evidence obtained with the FDLmethod. Another claim that follows from

that one is that various priming effects such as for colour (Maljkovic &

Nakayama, 1994), orientation (Huang et al., 2004; Kristjánsson et al., 2002),

or other features simply boil down to the learning of a distribution with no

variance (see also Chetverikov et al., 2017a).

Geng and colleagues have also reported evidence that is consistent with this.

For example, Geng et al. (2017) showed that perceptual and attentional history
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plays a key role in the strategic biasing of attentional templates. In their study,

the probability that a distractor was similar to the target influenced search

template tuning. If a template is just the target feature value plus noise, then it

should be the same regardless of distractor identity. However, Geng et al.

showed how increased similarity of the search items led to more precisely

tuned templates. The results of Hansmann-Roth et al. (2022) then show how

this tuning process may lead to increasingly precise representations of the

distributions that targets are drawn from (see also Chapman et al., 2023).

In Won and Geng (2018), observers searched for a grey square among

coloured squares. During a training session, the distractors were always

drawn from the same set of coloured distractors. When new distractors were

introduced, the distance in feature space of these new distractors from the old

ones determined how much suppression they received. Won and Geng argued

that the templates of the distractors from the training phases have broad tuning,

allowing suppression of new items, that are similar, but not identical, to the

learned ones and that target templates require sharper tuning (similar to what

Chetverikov et al., 2020, argued). Lau et al. (2021) studied a similar problem,

using real images instead of the simpler stimuli used in the previously men-

tioned studies. They reported that target template tuning is coarse when targets

and distractors can easily be distinguished (e.g., man-made objects versus

animals) but when the target template needs to be more detailed (e.g., within-

category search), these learned templates do not transfer well.

Chetverikov et al. (2020) investigated whether instead of reflecting specific

values, such rejection can be probabilistic, or more specifically, whether the

rejection templates are probabilistic, and how accurately such templates reflect

the probabilities of features to be ignored (as they are being learned). Using

a double-target search task combined with a bimodal distractor distribution on

the learning trials, they found that both modes of the distractor feature distribu-

tion are represented on a trial-by-trial basis. This would be impossible if only

the variance of distractors were taken into account in the template formation.

Instead, the results suggest that rejection templates are probabilistic.

As Won and Geng (2018) argue, distractor templates are more broadly tuned

than target templates. This could be an efficient strategy for the visual system

since it may allow easy generalization of suppression of a distractor range,

a strategy that might not be as useful to find targets. For targets, a broad

representation could, for example, lead to high numbers of false alarms. To

take one example, Geng et al. (2017) observed that when targets are similar to

distractors, templates are sharpened and shifted away from distractors. They

showed how the probability that a distractor is similar to the target affects the

tuning of search templates. The increased similarity of targets and distractors
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led to the more precise tuning of the templates. This is reminiscent of findings

that indicate that templates can be strategically biased away from the actual

values of targets for maximum discriminability (Navalpakkam & Itti, 2007;

Scolari & Serences, 2009; Yu & Geng, 2019), if this provides the best way of

distinguishing targets from distractors. Alternatively, such biases could be

a side effect of an attempt to disentangle a mixture of sensory signals related

to distractors and targets in working memory, similar to other inter-item or

contextual effects in memory and perception (Chetverikov, 2023).

Further cementing the role of history in generating selection preferences in

visual attention tasks, observers seem to predict future stimuli based on past

statistics that they have tracked over a set of adjacent trials – they represent what

the target is likely to look like given the previous history (Witkowski & Geng,

2022). In this case, the most reliable predictor was the progression throughout

history. Note that this is consistent with proposals that the visual system

prioritizes stable features over variable ones (see, e.g., Witkowski & Geng,

2019). While this is consistent with the Bayesian principles discussed in

Section 4.2, integration of previously perceived stimuli is clearly not always

Bayesian optimal (see further discussion in the next section).

This meshes well with recent results from Yoo et al. (2021) who showed how

uncertainty is actively represented in working memory. Many estimates of

working memory capacity describe it as a single number, but the assumption

has also been that the estimates of the number (representing capacity) can be

noisy. Yoo et al. used an orientation change detection task and contrasted

performance when observers were required to maintain the uncertainty in

memory and when the uncertainty was available in the test image. In the former

case, they found evidence that the uncertainty was maintained during the test

period and as Yoo et al. argued, this use was implicit since the representation of

uncertainty wasn’t an actual requirement of the task.

4.4 Inferences in the Presence of Variability

Having discussed the empirical findings on the effects of variability and its

representation, how should we understand these findings at a theoretical level?

A leading theoretical approach in modern perception science is the idea of

predictive coding (Rao & Ballard, 1999), often framed as a Bayesian inference

process (Friston, 2010). Bayesian models of perception have taken centre stage in

explaining the effects of stimulus variability at different timescales (Seriès &

Seitz, 2013), such as in studies of cardinal priors in orientation perception

(Bertana et al., 2021; Girshick et al., 2011). This is not surprising since variability

is tightly related to uncertainty that plays a central role in the idea of Bayesian or,
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more generally, probabilistic perception (Koblinger et al., 2021; Ma, 2012;

Pouget et al., 2013; van Bergen et al., 2015).Wewill discuss the role of variability

within the general framework of probabilistic perception and whether simpler,

non-probabilistic models, can explain the existing body of research.

One of the most straightforward predictions of Bayesian accounts of percep-

tion is that when information from multiple sources is integrated, the estimated

stimulus value should be equal to the weighted sum of the sources’ values with

weights provided by the precision of the sources (see Ma et al., 2023, for an

introduction on Bayesian models of perception). For example, when an obser-

ver sees a flash and hears a sound corresponding to the same stimulus, the

estimated location of that stimulus would be between the location of the flash

and location of the sounds. Usually, visual estimates of location are more

precise and hence the estimated location would be closer to the flash than to

the sound. Variability affects the uncertainty in estimates of the stimulus mean

value (see Section 1.3 and Figure 2 for the difference between uncertainty and

variability), so when the information about two stimuli that have variable

features is integrated, the result of this integration should be affected by the

variability of each stimulus.

Notably, however, empirical studies have provided little support for such

simple Bayesian accounts. For example, serial dependence in vision is a well-

known example of how information might be integrated across trials (Fischer &

Whitney, 2014; see Pascucci et al., 2023 for a review). When observers estimate

the features (e.g., orientation) of stimuli, their responses on trial N are typically

attracted towards stimuli on trial N-1. This has also been observed when

participants are required to estimate the mean of a visual ensemble (Manassi

et al., 2017). Importantly, in the current context, Son and colleagues (2021)

studied how variability in a visual ensemble affects the mean estimates in

sequential decisions. Under a simple Bayesian account, judgments of

a stimulus with higher uncertainty should be biased more towards the preceding

stimulus with lower uncertainty compared to the opposite case (van Bergen &

Jehee, 2019). What Son et al. found, however, was that the low-variability

stimulus created a repulsive bias in the perceptual judgments of the subsequent

high-variability stimulus (while the attraction was observed in the opposite

case). The authors explained their results by a more complex and suboptimal

model than straightforward Bayesian models, which combines Bayesian inte-

gration with changes to sensory noise due to adaptation (see alsoWei & Stocker,

2015). Notably, such a pattern of results can be explained with optimal models

that use different assumptions (Chetverikov, 2023). However, the effects of

variability on biases in sequential decisions clearly cannot be accounted for by

a simple Bayesian model.
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Tanrikulu et al. (2021b) tested what we call the straightforward Bayesian

account differently. They presented distributions with low versus high variance

alternatively during learning trials in an FDL paradigm, predicting that the low

variance distributions would be weighted more highly on the test trials. In three

experiments Tanrikulu et al. found instead that by far the highest weight was

assigned to the most recent distractor distribution (on the most recent trial),

irrespective of variance. There was also very little, if any, integration of

information from the two learning distributions. The response time curves

from the test trials (reflecting the role-reversal effects, as explained in section

3.2) were simply determined by the variance on the last learning trial. This

showed how information integration across trials is dominated by a strong

recency effect. Tanrikulu et al. speculated that there may have simply been

too much variability in the stimulus history for the visual system to weigh

anything else than the most recent input highly. This result also contradicts the

simple Bayesian observer account.

To reiterate, more complexmodels may still be able to accommodate the data.

For example, Tanrikulu et al. (2021b) suggested that the ability to pick up

distractor statistics could be limited because the distributions were unstable

from one trial to the next. Such instability can be taken into account in models

involving causal inference similar to multisensory perception (e.g., Körding

et al., 2007). The notion of optimality can also change when time and resource

constraints are taken into account (e.g., Vul et al., 2014). Alternatively, subopti-

mal heuristic models can be used to explain the effect of variability on infer-

ences (see Rahnev & Denison, 2018 for a general discussion on optimality in

perception). For example, it may be possible to take only a rough estimate of

how variable the stimulus is and the small differences in the experimental

design in Tanrikulu et al. (2021b) may not be strong enough to create noticeable

effects, resulting in the dominance of the most recent stimulus. Similar conclu-

sions regarding recency effects have been reached by Raviv, Ahissar &

Loewenstein (2012) who used a two-tone discrimination task. A better theoret-

ical account of how perceptual information is integrated may assume that vision

is simply totally opportunistic in terms of the information that the system uses

and that under conditions of high uncertainty a recency effect is induced, instead

of an optimally integrated representation.

4.5 Summary and Concluding Remarks

Our aim in this Element has been to assess how variability affects performance

in visual tasks and how variability is represented by human observers. Our

central argument can be summarized in the following statements:
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1) Variability in visual stimuli affects performance in a wide range of tasks, and

this influence is not always negative.

2) The brain represents the variability in the visual environment at a much

higher level of detail than the recent consensus in the literature seems to

suggest.

3) There is evidence that variability could be represented as a specific entity,

not just as a characteristic of the particular stimuli in each case, but this may

vary by task demands.

4) Reliance on explicit reports for understanding how variability is represented

has underestimated the capacity for storing information about variability.

Variability is not represented so that it can be used for explicit forced choice

or adjustment tasks – it is represented for interacting with the world.

5) Explicit tests may force observers into a low-dimensional response space,

that is sparser than what they have available for action.

6) Tests that tap into how representations may be used for interactions, such as

the implicit tests in the feature distribution learning (FDL) method, may be

better suited to assessing how variability is represented.

7) Arguments that the apparent detail in the visual environment is illusory may

rely on the untested assumption that what is represented can be reported.

8) A natural conclusion is that more is represented than can be consciously

accessed and reported – there is considerable ‘overflow’ in other words.

The world is full of detail and our visual system can represent far more of this

detail than is often assumed. Here we have highlighted how vision scientists

are beginning to understand how representations of environmental variability

are constructed. The evidence strongly suggests that these representations are

implicit and cannot easily be accessed with explicit reports that may force

observers into lower-dimensional spaces of possibilities than those used for

interactions with the world. Importantly, our analysis also helps us with differ-

entiating between probabilistic and non-probabilistic models of perception

since some of the most important experimental paradigms that we have

reviewed provide much richer data than traditional studies with more impover-

ished stimuli. It is also essential to highlight that representations of variability

can be very useful, allowing us to successfully move around, and interact with

our perceptual environment. Importantly, for such interactions, there is no need

for this information to be conscious.

The findings of Hansmann-Roth et al. (2021) where large differences were

observed between explicit and implicit reports of distribution properties high-

light that different tasks might require different inferences while perception is

the same. The importance of this is that the capacity for representation used for
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action may be severely underestimated. Sparse representation views have been

all the rage for a quarter century, now. While it is almost certainly true that

summaries of information can be generated when observers are specifically

asked about this, the question remains of to what degree such findings could be

reflecting the task rather than perception per se. When observers are asked to

summarize information, they can do so. But is this the basis for perception and

action? Does the fact that observers can do this mean that the information is

represented in this way? This is what we doubt. The information for perception

within the world and action within the visual environment seems to be far richer

than this suggests, reflecting the detail in our visual representations.
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